Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (9): 1220-1226.doi: 10.19982/j.issn.1000-6621.20250089
• Review Articles • Previous Articles Next Articles
Received:
2025-03-06
Online:
2025-09-10
Published:
2025-08-27
Contact:
Chen Ling
E-mail:lingjuncd@163.com
Supported by:
CLC Number:
Zhang Xiaoke, Chen Ling. Research progress on the anti-tuberculosis effect and mechanism of cinnamaldehyde on Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1220-1226. doi: 10.19982/j.issn.1000-6621.20250089
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250089
序号 | 参考文献 | 文献发表 年份 | 国家/地区 | 肉桂醛来源 | 结核分枝杆菌 菌株类型 | MIC值 (μg/ml) | MIC测定 方法 |
---|---|---|---|---|---|---|---|
1 | 张越[ | 2022 | 中国/贵阳 | 北京百灵威科技 有限公司(中国) | BCG | 8 | 微量滴定法 (刃天青) |
2 | Boussamba- Digombou[ | 2022 | 南非/ 比勒陀利亚 | Pranar?m International 公司(比利时) | H37Ra、 ATCC 25177 | 8 | 微量滴定法 (阿尔玛蓝) |
3 | 蒋昌河[ | 2020 | 中国/贵阳 | 从桂枝中提取 | BCG、 ATCC 35734 | 10 | 刃天青显色法 |
4 | 王仁凤[ | 2020 | 中国/贵阳 | 上海麦克林生化科技股份 有限公司(中国) | H37Rva BCGa | 10 10 | 刃天青显色法 |
5 | Mota[ | 2019 | 巴西/ 福塔莱萨 | Sigma-Aldrich 公司(巴西) | H37Rva 临床分离株(9例)ab | 19.5 15.2±5.1 | 微量滴定法 (刃天青) |
6 | Sawicki[ | 2018 | 波兰/ 卢布林 | Unimark Remedies 制药有限公司(印度) | H37Ra、 ATCC 25177 | 8 | 微量滴定法 (刃天青) |
7 | Andrade- Ochoa[ | 2015 | 墨西哥/ 奇瓦瓦 | Sigma-Aldrich 公司(美国) | AN5a H37Rva | 12.50 3.12 | 微量滴定法 (阿尔玛蓝) |
[1] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[2] | 毕珂凡, 曹丹, 丁丞, 等. 结核病药物治疗的过去、现状及未来. 浙江大学学报(医学版), 2022, 51(6): 657-668. doi:10.3724/zdxbyxb-2022-0454. |
[3] | Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Pharmaceutics, 2021, 13(5): 592. doi:10.3390/pharmaceutics13050592. |
[4] | 张蕊. 中医药治疗结核病的优势和前景. 中国民间疗法, 2023, 31(15): 117-120. doi:10.19621/j.cnki.11-3555/r.2023.1535. |
[5] | 梁晨, 唐神结, 林明贵. 结核病综合治疗研究进展. 结核与肺部疾病杂志, 2024, 5(1): 70-80. doi:10.19983/j.issn.2096-8493.20230112. |
[6] | 梁健, 康文婷, 冯晶, 等. 基于“杀虫、补虚”理论探讨中药对脊柱结核免疫调控机制的研究进展. 中国医药导报, 2023, 20(9): 46-49, 57. doi:10.20047/j.issn1673-7210.2023.09.09. |
[7] | 刘永丹, 高巍, 王亮, 等. 肉桂及其代谢产物在帕金森病治疗中的研究进展. 中国医药科学, 2024, 14(24): 27-30, 87. doi:10.20116/j.issn2095-0616.2024.24.06. |
[8] | 李雪, 马艳春, 赵婧含, 等. 肉桂的化学成分及药理作用研究进展. 药学研究, 2024, 43(10): 1015-1020. doi:10.13506/j.cnki.jpr.2024.10.015. |
[9] | 李先芝, 毛琼丽, 刘洋, 等. 肉桂化学成分及药理作用质量标志物研究进展. 化学分析计量, 2024, 33(10): 119-126. doi:10.3969/j.issn.1008-6145.2024.10.022. |
[10] | Sawicki R, Golus J, Przekora A, et al. Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules, 2018, 23(9): 2381. doi:10.3390/molecules23092381. |
[11] | 马叶子, 徐浩南, 王佳伟, 等. 肉桂化学成分及药理作用研究进展[J/OL]. 陕西中医药大学学报, 2025: 1-10 [2025-03-20]. http://kns.cnki.net/kcms/detail/61.1501.R.20250319.1548.027.html. |
[12] | 王清泉, 李亚男, 刘国飞, 等. 肉桂醛药理作用及相关作用机制研究进展. 中华中医药杂志, 2024, 39(12): 6646-6652. |
[13] | Polaquini CR, Torrezan GS, Santos VR, et al. Antibacterial and Antitubercular Activities of Cinnamylideneacetophenones. Molecules, 2017, 22(10): 1685. doi:10.3390/molecules22101685. |
[14] | 王仁凤. 抗结核杆菌肉桂醛衍生物及二甲双胍衍生物的合成与抗菌机制的初探. 贵阳:贵州大学, 2020. doi:10.27047/d.cnki.ggudu.2020.000457. |
[15] | 孙罗美, 邹胜龙. 肉桂醛的研究与应用. 广东饲料, 2012, 21(12): 29-32. doi:10.3969/j.issn.1005-8613.2012.12.013. |
[16] | 宋宗辉, 张艺雯, 王玲洁, 等. 肉桂醛的药理活性及其研究进展. 解放军药学学报, 2018, 34(6): 550-554. doi:10.3969/j.issn.1008-9926.2018.06.021. |
[17] | 王雨琼, 勾长龙, 付莹莹, 等. 植物提取物肉桂醛的抗菌作用及其在动物生产中的应用. 中国兽医杂志, 2014, 50(3): 53-54. doi:10.3969/j.issn.0529-6005.2014.03.018. |
[18] | Azeredo CM, Santos TG, Maia BH, et al. In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil. BMC Complement Altern Med, 2014, 14: 309. doi:10.1186/1472-6882-14-309. |
[19] | Andrade-Ochoa S, Nevárez-Moorillón GV, Sánchez-Torres LE, et al. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement Altern Med, 2015, 15: 332. doi:10.1186/s12906-015-0858-2. |
[20] | Mota APP, Campelo TA, Frota CC. Evaluation of the antimicrobial activity of Cinnamomum zeylanicum essential oil and trans-Cinnamaldehyde against resistant Mycobacterium tuberculosis. Biosci J, 2019, 35(1): 296-306. doi:10.14393/BJ-v35n1a2019-41710. |
[21] | Boussamba-Digombou KJ, Sandasi M, Kamatou GP, et al. Investigating the Antituberculosis Activity of Selected Commercial Essential Oils and Identification of Active Constituents Using a Biochemometrics Approach and In Silico Modeling. Antibiotics (Basel), 2022, 11(7): 948. doi:10.3390/antibiotics11070948. |
[22] | 张越, 夏孟雨, 王蕾, 等. 鬼箭羽、肉桂抗结核杆菌成分的逆向跟踪分离. 天然产物研究与开发, 2022, 34(6): 1038-1046. doi:10.16333/j.1001-6880.2022.6.017. |
[23] | 蒋昌河. 吡嗪酰胺与中药联合抗结核杆菌的药理学研究. 贵阳: 贵州大学, 2020. doi:10.27047/d.cnki.ggudu.2020.000377. |
[24] |
Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils--a review. Food Chem Toxicol, 2008, 46(2): 446-475. doi:10.1016/j.fct.2007.09.106.
pmid: 17996351 |
[25] |
Ji B, Zhuo L, Yang B, et al. Development and validation of a sensitive and fast UPLC-MS/MS method for simultaneous determination of seven bioactive compounds in rat plasma after oral administration of Guizhi-gancao decoction. J Pharm Biomed Anal, 2017, 137: 23-32. doi:10.1016/j.jpba.2017.01.021.
pmid: 28088663 |
[26] |
Zhao H, Xie Y, Yang Q, et al. Pharmacokinetic study of cinnamaldehyde in rats by GC-MS after oral and intravenous administration. J Pharm Biomed Anal, 2014, 89: 150-157. doi:10.1016/j.jpba.2013.10.044.
pmid: 24291110 |
[27] |
Zhao H, Yang Q, Xie Y, et al. Simultaneous determination of cinnamaldehyde and its metabolite in rat tissues by gas chromatography-mass spectrometry. Biomed Chromatogr, 2015, 29(2): 182-187. doi:10.1002/bmc.3254.
pmid: 24898181 |
[28] |
National Toxicology Program. NTP toxicology and carcinogenesis studies of trans-cinnamaldehyde (CAS No. 14371-10-9) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser, 2004(514): 1-281.
pmid: 15146216 |
[29] | 中国防痨协会. 耐药结核病化学治疗指南(2019年简版). 中国防痨杂志, 2019, 41(10): 1025-1073. doi:10.3969/j.issn.1000-6621.2019.10.001. |
[30] |
Abrahams KA, Besra GS. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology, 2018, 145(2): 116-133. doi:10.1017/S0031182016002377.
pmid: 27976597 |
[31] |
Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother, 2005, 49(6):2474-2478. doi:10.1128/AAC.49.6.2474-2478.2005.
pmid: 15917549 |
[32] | Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog, 2018, 120: 198-203. doi:10.1016/j.micpath.2018.04.036. |
[33] | Nowotarska SW, Nowotarski K, Grant IR, et al. Mechanisms of Antimicrobial Action of Cinnamon and Oregano Oils, Cinnamaldehyde, Carvacrol, 2,5-Dihydroxybenzaldehyde, and 2-Hydroxy-5-Methoxybenzaldehyde against Mycobacterium avium subsp. paratuberculosis (Map). Foods, 2017, 6(9): 72. doi:10.3390/foods6090072. |
[34] | 刘晓博, 李玉艳, 尤启冬. β-酮脂酰-ACP合成酶(FabH)抑制剂研究进展. 化学进展, 2009, 21(9): 1930-1938. |
[35] | Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A, 2014, 111(13): 4958-4963. doi:10.1073/pnas.1403078111. |
[36] | Sieniawska E, Sawicki R, Golus J, et al. Untargetted Metabolomic Exploration of the Mycobacterium tuberculosis Stress Response to Cinnamon Essential Oil. Biomolecules, 2020, 10(3): 357. doi:10.3390/biom10030357. |
[37] | Datta P, Ravi J, Guerrini V, et al. The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions. Mol Microbiol, 2015, 97(3): 408-422. doi:10.1111/mmi.13037. |
[38] |
Sawicki R, Sieniawska E, Swatko-Ossor M, et al. The frequently occurring components of essential oils beta elemene and R-limonene alter expression of dprE1 and clgR genes of Mycobacterium tuberculosis H37Ra. Food Chem Toxicol, 2018, 112: 145-149. doi:10.1016/j.fct.2017.12.052.
pmid: 29288759 |
[39] |
Li X, Ma S. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ. Eur J Med Chem, 2015, 95: 1-15. doi:10.1016/j.ejmech.2015.03.026.
pmid: 25791674 |
[40] | Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 2019, 139: 104405. doi:10.1016/j.fitote.2019.104405. |
[41] |
Wehenkel A, Fernandez P, Bellinzoni M, et al. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett, 2006, 580(13): 3018-3022. doi:10.1016/j.febslet.2006.04.046.
pmid: 16674948 |
[42] | Jani C, Eoh H, Lee JJ, et al. Regulation of polar peptidoglycan biosynthesis by Wag 31 phosphorylation in mycobacteria. BMC Microbiol, 2010, 10: 327. doi:10.1186/1471-2180-10-327. |
[1] | Yan Yueming, Chen Meng, Li Xuekui, Wang Zhongdong, Sun Haiyan, Dai Xiaoqi, Song Song, Xu Honghong, Zhang Menghan, Wang Zhi, Lyu Kunzheng. Prevalence and influencing factors of latent tuberculosis infection among elderly residents in nursing homes in Qingdao [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1148-1153. |
[2] | Zhu Tingting, Wang Mingzhe, Zulikatiayi Abudula, Gulina Badeerhan, Kaideliyan Abuduwaili, Wang Le. Preliminary analysis of the construction of mouse models infected with Xinjiang Uygur Autonomous Region Mycobacterium tuberculosis CAS lineage and H37Rv standard strain [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1187-1195. |
[3] | Chen Liyao, Peng Xiao, Liu Yuanyuan, Shi Jin, Guo Yongli, Lu Jie. The molecular mechanisms of ferroptosis and their potential applications in the diagnosis and treatment of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1227-1232. |
[4] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
[5] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
[6] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[7] | Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. |
[8] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[9] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[10] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[11] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[12] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[13] | Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. |
[14] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[15] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||