Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (3): 374-379.doi: 10.19982/j.issn.1000-6621.20240391
• Review Articles • Previous Articles Next Articles
Received:
2024-09-06
Online:
2025-03-10
Published:
2025-02-27
Contact:
Chen Suting, Email:Supported by:
CLC Number:
Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis[J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. doi: 10.19982/j.issn.1000-6621.20240391
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240391
[1] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6):500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[2] | Lin Y, Harries AD, Kumar AM, et al. Management of diabetes-tuberculosis: a guide to the essential practice. France: International Union Against Tuberculosis and Lung Disease, 2019. |
[3] |
Nguyen TVA, Anthony RM, Bañuls AL, et al. Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clin Infect Dis, 2018, 66(10):1625-1630. doi:10.1093/cid/cix992.
pmid: 29126225 |
[4] | Zuur MA, Bolhuis MS, Anthony R, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol, 2016, 12(5):509-521. doi:10.1517/17425255.2016.1162785. |
[5] | World Health Organization. Global tuberculosis report 2023. World Health Organization, 2023. |
[6] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4, Treatment: drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[7] |
Chahine EB, Karaoui LR, Mansour H. Bedaquiline: A Novel Diarylquinoline for Multidrug-Resistant Tuberculosis. Ann Pharmacother, 2014, 48(1):107-115. doi:10.1177/1060028013504087.
pmid: 24259600 |
[8] | Worley MV, Estrada SJ. Bedaquiline: A Novel Antitubercular Agent for the Treatment of Multidrug-Resistant Tuberculosis. Pharmacotherapy, 2014, 34(11):1187-11197. doi:10.1002/phar.1482. |
[9] | Shaw ES, Stoker NG, Potter JL, et al. Bedaquiline: what might the future hold?. Lancet Microbe, 2024, 5(12):100909. doi:10.1016/S2666-5247(24)00149-6. |
[10] | 张玉霞, 熊瑜, 常婷婷, 等. 含贝达喹啉方案治疗耐药肺结核的不良反应分析. 中国防痨杂志, 2022, 44(3): 239-245. doi:10.19982/j.issn.1000-6621.20210702. |
[11] | Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017, 49(3):1601719. doi:10.1183/13993003.01719-2016. |
[12] |
Ismail NA, Omar SV, Joseph L, et al. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine, 2018, 28: 136-142. doi:10.1016/j.ebiom.2018.01.005.
pmid: 29337135 |
[13] | Olayanju O, Limberis J, Esmail A, et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J, 2018, 51(5):1800544. doi:10.1183/13993003.00544-2018. |
[14] |
Pai H, Ndjeka N, Mbuagbaw L, et al. Bedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: a retrospective cohort analysis. BMC Infect Dis, 2022, 22(1):870. doi:10.1186/s12879-022-07861-x.
pmid: 36414938 |
[15] | Barilar I, Fernando T, Utpatel C, et al. Emergence of bedaqui-line-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: a retrospective observational study. Lancet Infect Dis, 2024, 24(3):297-307. doi:10.1016/S1473-3099(23)00498-X. |
[16] |
Derendinger B, Dippenaar A, De Vos M, et al. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. Lancet Microbe, 2023, 4(12):e972-e982. doi:10.1016/S2666-5247(23)00172-6.
pmid: 37931638 |
[17] | Chesov E, Chesov D, Maurer FP, et al. Emergence of beda-quiline resistance in a high tuberculosis burden country. Eur Respir J, 2022, 59(3):2100621. doi:10.1183/13993003.00621-2021. |
[18] | Liu Y, Gao M, Du J, et al. Reduced Susceptibility of Mycobacterium tuberculosis to Bedaquiline During Antituberculosis Treatment and Its Correlation With Clinical Outcomes in China. Clin Infect Dis, 2021, 73(9):e3391-e3397. doi:10.1093/cid/ciaa1002. |
[19] | 张书, 雷卉, 王为娜, 等. 2020—2021年凉山州4个彝族聚居县297株结核分枝杆菌耐药及菌株谱系分析. 预防医学情报杂志, 2024, 12: 1-9. doi:10.19971/j.cnki.1006-4028.230601. |
[20] | 田娜, 董巧琰, 初乃惠. 抗结核药物贝达喹啉与氯法齐明交叉耐药机制及其与治疗结局相关性. 中国临床医生杂志, 2024, 52(3): 283-285. doi:10.3969/j.issn.2095-8552.2024.03.008. |
[21] | Cook GM, Hards K, Vilchèze C, et al. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiol Spectr, 2014, 2(3):10.1128/microbiolspec.MGM2-0015-2013. doi:10.1128/microbiolspec.MGM2-0015-2013. |
[22] |
Jones D. Tuberculosis success. Nat Rev Drug Discov, 2013, 12(3):175-176. doi:10.1038/nrd3957.
pmid: 23449293 |
[23] | Koul A, Dendouga N, Vergauwen K, et al. Diarylquinolines target subunitc of mycobacterial ATP synthase. Nat Chem Biol, 2007, 3(6):323-324. doi:10.1038/nchembio884. |
[24] |
Andries K, Verhasselt P, Guillemont J, et al. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707): 223-227. doi:10.1126/science.1106753.
pmid: 15591164 |
[25] |
Petrella S, Cambau E, Chauffour A, et al. Genetic Basis for Natural and Acquired Resistance to the Diarylquinoline R207910 in Mycobacteria. Antimicrob Agents Chemother, 2006, 50(8):2853-2856. doi:10.1128/AAC.00244-06.
pmid: 16870785 |
[26] | 向煜, 杨淑柳, 武娅宁, 等. 基于新疆维吾尔自治区南疆地区169株结核分枝杆菌探讨基因缺失对贝达喹啉的耐药机制. 疾病监测, 2024, 39(5): 639-646. doi:10.3784/jbjc.202311200629. |
[27] |
Milano A, Pasca MR, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL 5 efflux system. Tuberculosis, 2009, 89(1): 84-90. doi:10.1016/j.tube.2008.08.003.
pmid: 18851927 |
[28] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi:10.1093/jac/dkaa136.
pmid: 32361756 |
[29] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8):4590-4599. doi:10.1128/AAC.00753-16.
pmid: 27185800 |
[30] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis: Table 1. J Antimicrob Chemother, 2015, 70(9):2507-2510. doi:10.1093/jac/dkv150.
pmid: 26045528 |
[31] | Perumal R, Bionghi N, Nimmo C, et al. Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2023, 62(6):2300639. doi:10.1183/13993003.00639-2023. |
[32] | Köser CU, Miotto P, Ismail N, et al. A composite reference standard is needed for bedaquiline antimicrobial susceptibility testing for Mycobacterium tuberculosis complex. Eur Respir J, 2024, 64(1):2400391. doi:10.1183/13993003.00391-2024. |
[33] | 宋媛媛, 夏辉, 赵雁林. 结核分枝杆菌表型药物敏感性试验临界浓度设定发展历程. 中国防痨杂志, 2023, 45(7): 631-638. doi:10.19982/j.issn.1000-6621.20230153. |
[34] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3. Diagnosis: rapid diagnostics for tuberculosis detection. Third edition. Geneva: World Health Organization, 2024. |
[35] | Witney AA, Cosgrove CA, Arnold A, et al. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Medicine, 2016, 14(1): 46. doi:10.1186/s12916-016-0598-2. |
[36] |
Nimmo C, Bionghi N, Cummings MJ, et al. Opportunities and limitations of genomics for diagnosing bedaquiline-resistant tuberculosis: a systematic review and individual isolate meta-analysis. Lancet Microbe, 2024, 5(2): e164-e172. doi:10.1016/S2666-5247(23)00317-8.
pmid: 38215766 |
[37] | Updated Guidelines for the Use of Nucleic Acid Amplification Tests in the Diagnosis of Tuberculosis. JAMA, 2009, 301(10): 1014. doi:10.1001/jama.2009.148. |
[38] |
Anagoni S, Mudhigeti N, Alladi M, et al. Effect of delay in processing and storage temperature on diagnosis of SARS-CoV-2 by RTPCR testing. Indian J Med Microbiol, 2022, 40(3):427-432. doi:10.1016/j.ijmmb.2022.03.005.
pmid: 35393127 |
[39] | Jin W, Wang J, Yang X. Analysis of three cases with false positive PCR results of non tuberculosis mycobacterium. Respir Med Case Rep, 2023, 47:101973. doi:10.1016/j.rmcr.2023.101973. |
[40] | Lin CR, Wang HY, Lin TW, et al. Development of a two-step nucleic acid amplification test for accurate diagnosis of the Mycobacterium tuberculosis complex. Sci Rep, 2021, 11(1):5750. doi:10.1038/s41598-021-85160-2. |
[41] | Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods, 2022, 201: 82-95. doi:10.1016/j.ymeth.2021.04.008. |
[42] | MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020, 58(10):e01582-19. doi:10.1128/JCM.01582-19. |
[43] |
Pradhan S, Gautam K, Pant V. Variation in Laboratory Reports: Causes other than Laboratory Error. JNMA J Nepal Med Assoc, 2022, 60(246):222-224. doi:10.31729/jnma.6022.
pmid: 35210649 |
[44] | Reinicke M, Braun SD, Diezel C, et al. From Shadows to Spotlight: Enhancing Bacterial DNA Detection in Blood Samples through Cutting-Edge Molecular Pre-Amplification. Antibiotics, 2024, 13(2): 161. doi:10.3390/antibiotics13020161. |
[45] | World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance Second Edition. Geneva: World Health Organization, 2023. |
[46] | Del Giovane S, Bagheri N, Di Pede AC, et al. Challenges and perspectives of CRISPR-based technology for diagnostic applications. TrAC Trends in Analytical Chemistry, 2024, 172: 117594. doi:10.1016/j.trac.2024.117594. |
[47] | Yuan X, Sui G, Zhang D, et al. Recent developments and trends of automatic nucleic acid detection systems. J Biosaf Biosecur, 2022, 4(1):54-58. doi:10.1016/j.jobb.2022.02.001. |
[48] | Colman RE, Mace A, Seifert M, et al. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med, 2019, 16(4):e1002794. doi:10.1371/journal.pmed.1002794. |
[49] | Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing. Front Public Health, 2023, 11:1206056. doi:10.3389/fpubh.2023.1206056. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[2] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital Capital Medlical University/Beijing Tuberculosis and Thoracic Tumor Research Institute. Expert consensus on all-oral short-course therapy for drug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 830-839. |
[3] | Wang Jing, Wang Qingfeng, Jing Wei, Wang Yujin, Wang Xueyu, Huang Hairong, Chu Naihui, Nie Wenjuan. Dosage of recombinant Mycobacterium tuberculosis fusion protein for skin testing in the 18-65 year-old population and its safety in the 3-17 and 66-75 year-old populations: a randomized, blinded, positive-controlled phase Ⅱ clinical trial [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 840-845. |
[4] | Zhang Canyou, Xia Yinyin, Chen Hui, Zhao Fei, Wang Lixia, Zhang Hui, Cheng Jun. Community-based active case-finding for pulmonary tuberculosis in the elderly: analysis of strategies and effectiveness based on a multicenter cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 846-854. |
[5] | Zhong Yi, Yu Shengnan, Zhang Yuqi, Jing Rui, Li Xiujun. Analysis of public knowledge, attitude and practice on tuberculosis prevention and control based on Structural Equation Modeling [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 855-862. |
[6] | Zhou Fangjing, Liang Hongdi, Li Jianwei, Chen Yuhui, Wen Wenpei, Wu Huizhong. Assessment of the public awareness of core information on tuberculosis prevention and control in Guangdong Province based on a two-level model [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 863-869. |
[7] | Fan Jiangjing, Zhou Meng, Xu Zuhui, Zhang Chuanfang. Analysis of occupational satisfaction and associated factors among tuberculosis health management staff in primary healthcare institutions in Hunan Province [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 870-877. |
[8] | Yang Zeliang, Ma Zichun, Shang Yuanyuan, Shi Jin, Jing Wei, Pang Yu, Qin Lin. The diagnostic value of targeted next generation sequencing in sputum-free pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 878-883. |
[9] | Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. |
[10] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[11] | Wang Meiji, Liu Meijun, Chen Rui, Xia Lu, Liu Xuhui, Yang Yang, Liu Huarui, Ye Dan, Fei Zhentao, Xie Shiqi, Yang Shuqi, Pan Lei, Zhang Xiaolin, Xu Biao, Li Feng. Functional outcomes and predictors of tuberculous meningitis in children and young adolescents: a hospital-based retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 907-913. |
[12] | Wei Liuying, Jing Wei, Liu Zhifeng, Nie Wenjuan, Huang Xianzhen, Huang Lianpiao, Ban Fengting, Lin Yanrong, Yang Shixiong, Zhu Qingdong. Cost-effectiveness analysis of bedaquiline-containing regimens for the treatment of patients with multidrug/rifampicin-resistant pulmonary tuberculosis in Nanning: a retrospective cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 914-920. |
[13] | Liu Yiping, Lin Youfei, Chen Xiaohong, Pan Jianguang. A case of pulmonary Castleman disease prone to misdiagnosis: a literature review [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 921-929. |
[14] | Yu Huimin, Zheng Hui, Liu Eryong, Huang Fei, Wu Dan, Yin Zundong. Research progress on immunization strategies for tuberculosis vaccines [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 930-939. |
[15] | Mao Lirong, Nie Yanhui, An Hongjuan, Wang Ruilan, Dong Enjun, Su Yue, Zhao Wenjuan, Du Jingli, An Huiru. Application efficacy and research progress of mass spectrometry detection technology in the diagnosis of osteotuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 940-946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||