Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (7): 940-946.doi: 10.19982/j.issn.1000-6621.20250038
• Review Articels • Previous Articles Next Articles
Mao Lirong1, Nie Yanhui1, An Hongjuan1, Wang Ruilan1, Dong Enjun1, Su Yue1, Zhao Wenjuan1, Du Jingli1(), An Huiru2(
)
Received:
2025-01-23
Online:
2025-07-10
Published:
2025-07-03
Contact:
An Huiru, Email: CLC Number:
Mao Lirong, Nie Yanhui, An Hongjuan, Wang Ruilan, Dong Enjun, Su Yue, Zhao Wenjuan, Du Jingli, An Huiru. Application efficacy and research progress of mass spectrometry detection technology in the diagnosis of osteotuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(7): 940-946. doi: 10.19982/j.issn.1000-6621.20250038
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250038
[1] | Peto HM, Pratt RH, Harrington TA, et al. Epidemiology of extrapulmonary tuberculosis in the United States, 1993—2006. Clin Infect Dis, 2009, 49(9): 1350-1357. doi:10.1086/605559. |
[2] |
Baidoo EEK, Teixeira Benites V. Mass spectrometry-based microbial metabolomics: Techniques, analysis, and applications. Methods Mol Biol, 2019, 1859: 11-69. doi:10.1007/978-1-4939-8757-3_2.
pmid: 30421222 |
[3] | Kaushik A, Bandyopadhyay S, Porwal C, et al. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun, 2022, 619: 15-21. doi:10.1016/j.bbrc.2022.06.021. |
[4] |
Liu Y, Kaffah N, Pandor S, et al. Ion mobility mass spectrometry for the study of mycobacterial mycolic acids. Sci Rep, 2023, 13(1): 10390. doi:10.1038/s41598-023-37641-9.
pmid: 37369807 |
[5] | Yu S, Zou Y, Ma X, et al. Evolution of LC-MS/MS in clinical laboratories. Clin Chim Acta, 2024, 555: 117797. doi:10.1016/j.cca.2024.117797. |
[6] | Calderaro A, Chezzi C. MALDI-TOF MS: A reliable tool in the real life of the clinical microbiology laboratory. Microorganisms, 2024, 12(2): 322. doi:10.3390/microorganisms12020322. |
[7] | Wang YD, Yang J, Li Q, et al. UPLC-Q-TOF-MS/MS analysis of seco-sativene sesquiterpenoids to detect new and bioactive analogues from plant pathogen bipolaris sorokiniana. Front Microbiol, 2022, 13: 807014. doi:10.3389/fmicb.2022.807014. |
[8] |
Cox J, Mann M. Is proteomics the new genomics?. Cell, 2007, 130(3): 395-398. doi:10.1016/j.cell.2007.07.032.
pmid: 17693247 |
[9] | Hajdu T, Fóthi E, Kovári I, et al. Bone tuberculosis in Roman Period Pannonia (western Hungary). Mem Inst Oswaldo Cruz, 2012, 107(8): 1048-1053. doi:10.1590/s0074-02762012000800014. |
[10] | 罗霞, 孙强正, 肖迪, 等. 血清2型猪链球菌全菌体蛋白的免疫蛋白质组学研究. 中国人兽共患病学报, 2009, 25(4): 299-303. doi:10.3969/j.issn.1002-2694.2009.04.001. |
[11] | Abdul-Majid KB, Kenny PA, Finlay-Jones JJ. The effect of the bacterial product, succinic acid, on neutrophil bactericidal activity. FEMS Immunol Med Microbiol, 1997, 17(2): 79-86. doi:10.1111/j.1574-695X.1997.tb00999.x. |
[12] | 任利成, 黄晓元, 张丕红, 等. 珀酸对人外周血中性粒细胞凋亡的影响. 中华烧伤杂志, 2007, 23(6): 417-419. doi:10.3760/cma.j.issn.1009-2587.2007.06.006. |
[13] |
Xiao Y, Sha W, Tian Z, et al. Adenylate kinase: a novel antigen for immunodiagnosis and subunit vaccine against tuberculosis. J Mol Med (Berl), 2016, 94(7): 823-834. doi:10.1007/s00109-016-1392-5.
pmid: 26903285 |
[14] | Xu G, Xue J, Jiang J, et al. Proteomic analysis reveals critical molecular mechanisms involved in the macrophage anti-spinal tuberculosis process. Tuberculosis (Edinb), 2021, 126: 102039. doi:10.1016/j.tube.2020.102039. |
[15] |
Singel KL, Segal BH. NOX2-dependent regulation of inflammation. Clin Sci (Lond), 2016, 130(7): 479-490. doi:10.1042/CS20150660.
pmid: 26888560 |
[16] |
Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem, 2016, 85: 765-792. doi:10.1146/annurev-biochem-060815-014442.
pmid: 27050287 |
[17] |
Zeng MY, Miralda I, Armstrong CL, et al. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol Oral Microbiol, 2019, 34(2): 27-38. doi:10.1111/omi.12252.
pmid: 30632295 |
[18] | Soldano S, Pizzorni C, Paolino S, et al. Alternatively activated (M2) macrophage phenotype is inducible by endothelin-1 in cultured human macrophages. PLoS One, 2016, 11(11): e0166433. doi:10.1371/journal.pone.0166433. |
[19] | Baez IB, Sampieri CL, Solano FC, et al. Activity of matrix metalloproteinase 2 and 9 isoforms in sputum samples from individuals infected with M.tuberculosis. Microb Pathog, 2019, 135: 103607. doi:10.1016/j.micpath.2019.103607. |
[20] | Smit MJ, Verdijk P, van der Raaij-Helmer EM, et al. CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p 42 MAPK nor Akt/PI-3 kinase. Blood, 2003, 102(6): 1959-1965. doi:10.1182/blood-2002-12-3945. |
[21] |
Dufour JH, Dziejman M, Liu MT, et al. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol, 2002, 168(7): 3195-3204. doi:10.4049/jimmunol.168.7.3195.
pmid: 11907072 |
[22] | Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand (CXCL) 10 in autoimmune diseases. Autoimmun Rev, 2014, 13(3): 272-280. doi:10.1016/j.autrev.2013.10.010. |
[23] | Hoff ST, Salman AM, Ruhwald M, et al. Human B cells produce chemokine CXCL 10 in the presence of Mycobacterium tuberculosis specific T cells. Tuberculosis (Edinb), 2015, 95(1): 40-47. doi:10.1016/j.tube.2014.10.005. |
[24] | Xu W, Joo H, Clayton S, et al. Macrophages induce differentiation of plasma cells through CXCL10/IP-10. J Exp Med, 2012, 209(10): 1813-1823. doi:10.1084/jem.20112142. |
[25] | Chen X, Jia X, Lei H, et al. Screening and identification of serum biomarkers of osteoarticular tuberculosis based on mass spectrometry. J Clin Lab Anal, 2020, 34(7): e23297. doi:10.1002/jcla.23297. |
[26] | 朱旭, 李丹丹, 邱玲. 补体因子H相关蛋白1的研究进展. 临床检验杂志, 2020, 38(4): 280-282. doi:10.13602/j.cnki.jcls.2020.04.11. |
[27] | 莫颖, 王凤梅, 帕提古丽·阿斯讨拜, 等. 补体因子H相关蛋白1促进巨噬细胞分泌肿瘤坏死因子-α调控足细胞增殖和迁移实验研究. 陕西医学杂志, 2024, 53(4): 444-448. doi:10.3969/j.issn.1000-7377.2024.04.003. |
[28] |
Irmscher S, Brix SR, Zipfel SLH, et al. Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies. Nat Commun, 2019, 10(1): 2961. doi:10.1038/s41467-019-10766-0.
pmid: 31273197 |
[29] | Rastogi S, Ellinwood S, Augenstreich J, et al. Mycobacterium tuberculosis inhibits the NLRP 3 inflammasome activation via its phosphokinase PknF. PLoS Pathog, 2021, 17(7): e1009712. doi:10.1371/journal.ppat.1009712. |
[30] |
Skerka C, Chen Q, Fremeaux-Bacchi V, et al. Complement factor H related proteins (CFHRs). Mol Immunol, 2013, 56(3): 170-180. doi:10.1016/j.molimm.2013.06.001.
pmid: 23830046 |
[31] |
De La Fuente J, Gortázar C, Juste R. Complement component 3: a new paradigm in tuberculosis vaccine. Expert Rev Vaccines, 2016, 15(3): 275-277. doi:10.1586/14760584.2016.1125294.
pmid: 26605515 |
[32] |
Kumar V, Pouw RB, Autio MI, et al. Variation in CFHR3 determines susceptibility to meningococcal disease by controlling factor H concentrations. Am J Hum Genet, 2022, 109(9): 1680-1691. doi:10.1016/j.ajhg.2022.08.001.
pmid: 36007525 |
[33] | Wu X, Li L, Jinhabure, et al. Radix sophorae flavescentis of sophora flavescens aiton inhibits LPS-induced macrophage pro-inflammatory response via regulating CFHR2 expression. J Ethnopharmacol, 2024, 331: 118210. doi:10.1016/j.jep.2024.118210. |
[34] | Chen X, Wang J, Wang J, et al. Several potential serum proteomic biomarkers for diagnosis of osteoarticular tuberculosis based on mass spectrometry. Clin Chim Acta, 2023, 547: 117447. doi:10.1016/j.cca.2023.117447. |
[35] |
Buhlmann D, Eberhardt HU, Medyukhina A, et al. FHR3 blocks C3d-mediated coactivation of human B cells. J Immunol, 2016, 197(2): 620-629. doi:10.4049/jimmunol.1600053.
pmid: 27279373 |
[36] | McRae JL, Duthy TG, Griggs KM, et al. Human factor H-related protein 5 has cofactor activity, inhibits C 3 convertase activity, binds heparin and C-reactive protein, and associa-tes with lipoprotein. J Immunol, 2005, 174(10): 6250-6256. doi:10.4049/jimmunol.174.10.6250. |
[37] |
Maillet F, Kazatchkine MD, Glotz D, et al. Heparin prevents formation of the human C 3 amplification convertase by inhibiting the binding site for B on C3b. Mol Immunol, 1983, 20(12): 1401-1404. doi:10.1016/0161-5890(83)90172-4.
pmid: 6558419 |
[38] |
Inoue M, Niki M, Ozeki Y, et al. High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Sci Rep, 2018, 8(1): 6736. doi:10.1038/s41598-018-24233-1.
pmid: 29712918 |
[39] | Lord MS, Melrose J, Day AJ, et al. The inter-α-trypsin inhibitor family: Versatile molecules in biology and pathology. J Histochem Cytochem, 2020, 68(12): 907-927. doi:10.1369/0022155420940067. |
[40] |
Scavenius C, Poulsen EC, Thøgersen IB, et al. Matrix-degrading protease ADAMTS-5 cleaves inter-α-inhibitor and releases active heavy chain 2 in synovial fluids from arthritic patients. J Biol Chem, 2019, 294(42): 15495-15504. doi:10.1074/jbc.RA119.008844.
pmid: 31484722 |
[41] |
Okroj M, Holmquist E, Sjölander J, et al. Heavy chains of inter alpha inhibitor (IαI) inhibit the human complement system at early stages of the cascade. J Biol Chem, 2012, 287(24): 20100-20110. doi:10.1074/jbc.M111.324913.
pmid: 22528482 |
[42] |
Sanggaard KW, Sonne-Schmidt CS, Krogager TP, et al. The transfer of heavy chains from bikunin proteins to hyaluronan requires both TSG-6 and HC2. J Biol Chem, 2008, 283(27): 18530-18537. doi:10.1074/jbc.M800874200.
pmid: 18448433 |
[43] |
Amorim S, Reis CA, Reis RL, et al. Extracellular matrix mimics using hyaluronan-based biomaterials. Trends Biotechnol, 2021, 39(1): 90-104. doi:10.1016/j.tibtech.2020.06.003.
pmid: 32654775 |
[44] | Whittington AM, Turner FS, Baark F, et al. An acidic microen-vironment in tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses. PLoS Pathog, 2023, 19(7): e1011495. doi:10.1371/journal.ppat.1011495. |
[45] | Arbués A, Schmidiger S, Kammüller M, et al. Extracellular matrix-induced GM-CSF and hypoxia promote immune control of Mycobacterium tuberculosis in human in vitro granulomas. Front Immunol, 2021, 12: 727508. doi:10.3389/fimmu.2021.727508. |
[46] |
Bujak R, Struck-Lewicka W, Markuszewski MJ, et al. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal, 2015, 113: 108-120. doi:10.1016/j.jpba.2014.12.017.
pmid: 25577715 |
[47] | Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol, 2016, 17(7): 451-459. doi:10.1038/nrm.2016.25. |
[48] | Chen X, Ye J, Lei H, et al. Novel potential diagnostic serum biomarkers of metabolomics in osteoarticular tuberculosis patients: A preliminary study. Front Cell Infect Microbiol, 2022, 12: 827528. doi:10.3389/fcimb.2022.827528. |
[49] | Furse S, de Kroon AI. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol Membr Biol, 2015, 32(4): 117-119. doi:10.3109/09687688.2015.1066894. |
[50] | Nambi S, Long JE, Mishra BB, et al. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe, 2015, 17(6): 829-837. doi:10.1016/j.chom.2015.05.008. |
[51] | Reichmann MT, Tezera LB, Vallejo AF, et al. Integrated transcriptomic analysis of human tuberculosis granulomas and a biomimetic model identifies therapeutic targets. J Clin Invest, 2021, 131(15): e148136. doi:10.1172/JCI148136. |
[52] | Nicolson GL, Ferreira de Mattos G. A brief introduction to some aspects of the fluid-mosaic model of cell membrane structure and its importance in membrane lipid replacement. Membranes (Basel), 2021, 11(12): 947. doi:10.3390/membranes11120947. |
[53] | Prakhar P, Bhatt B, Lohia GK, et al. G9a and Sirtuin 6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog, 2023, 19(10): e1011731. doi:10.1371/journal.ppat.1011731. |
[54] | Speer A, Sun J, Danilchanka O, et al. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol Microbiol, 2015, 97(5): 881-897. doi:10.1111/mmi.13073. |
[55] |
Yan J, Horng T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol, 2020, 30(12): 979-989. doi:10.1016/j.tcb.2020.09.006.
pmid: 33036870 |
[56] |
Wu Y, Gulbins E, Grassmé H. The function of sphingomyelinases in mycobacterial infections. Biol Chem, 2018, 399(10): 1125-1133. doi:10.1515/hsz-2018-0179.
pmid: 29924725 |
[57] | 王超然, 娄才立, 施建党, 等. 代谢组学在脊柱结核血清诊断标志物筛选中的应用. 中华实验外科杂志, 2023, 40(11): 2220-2223. doi:10.3760/cma.j.cn421213-20230509-00256. |
[58] |
Jamwal SV, Mehrotra P, Singh A, et al. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep, 2016, 6: 23089. doi:10.1038/srep23089.
pmid: 26980157 |
[59] |
Hung ND, Kim MR, Sok DE. 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids, 2011, 46(10): 893-906. doi:10.1007/s11745-011-3589-2.
pmid: 21744277 |
[60] |
Lau SK, Lee KC, Curreem SO, et al. Metabolomic profiling of plasma from patients with tuberculosis by use of untargeted mass spectrometry reveals novel biomarkers for diagnosis. J Clin Microbiol, 2015, 53(12): 3750-3759. doi:10.1128/JCM.01568-15.
pmid: 26378277 |
[61] |
Tobin DM, Vary JC Jr, Ray JP, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5): 717-730. doi:10.1016/j.cell.2010.02.013.
pmid: 20211140 |
[62] | Amaral EP, Foreman TW, Namasivayam S, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med, 2022, 219(11): e20220504. doi:10.1084/jem.20220504. |
[63] | Syed SK, Bui HH, Beavers LS, et al. Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Am J Physiol Endocrinol Metab, 2012, 303(12): E1469-78. doi:10.1152/ajpendo.00269.2012. |
[64] | Williams V, Onwuchekwa C, Vos AG, et al. Tuberculosis treatment and resulting abnormal blood glucose: a scoping review of studies from 1981—2021. Glob Health Action, 2022, 15(1): 2114146. doi:10.1080/16549716.2022.2114146. |
[65] | Terán G, Li H, Catrina SB, et al. High glucose and carbonyl stress impair HIF-1-regulated responses and the control of Mycobacterium tuberculosis in macrophages. mBio, 2022, 13(5): e0108622. doi:10.1128/mbio.01086-22. |
[66] | Ssekamatte P, Sande OJ, van Crevel R, et al. Immunologic, metabolic and genetic impact of diabetes on tuberculosis susceptibility. Front Immunol, 2023, 14: 1122255. doi:10.3389/fimmu.2023.1122255. |
[67] | 陈汐濛, 贾兴旺, 雷红, 等. 应用基质辅助激光解吸电离飞行时间质谱行骨关节结核血清鉴别标志物的初探. 中华检验医学杂志, 2019, 42(6): 420-426. doi:10.3760/cma.j.issn.1009-8158.2019.06.006. |
[68] |
López-Hernández Y, Patiño-Rodríguez O, García-Orta ST, et al. Mass spectrometry applied to the identification of Mycobacterium tuberculosis and biomarker discovery. J Appl Microbiol, 2016, 121(6): 1485-1497. doi:10.1111/jam.13323.
pmid: 27718305 |
[69] | Ou X, Song Z, Zhao B, et al. Diagnostic efficacy of an optimized nucleotide MALDI-TOF-MS assay for anti-tuberculosis drug resistance detection. Eur J Clin Microbiol Infect Dis, 2024, 43(1): 105-114. doi:10.1007/s10096-023-04700-y. |
[70] | Shi J, He G, Ning H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis (Edinb), 2022, 135: 102209. doi:10.1016/j.tube.2022.102209. |
[71] | Gątarek J, Kałużna-Czaplińska J. Integrated metabolomics and proteomics analysis of plasma lipid metabolism in Parkinson’s disease. Expert Rev Proteomics, 2024, 21(1-3): 13-25. doi:10.1080/14789450.2024.2315193. |
[72] | Dubin RF, Rhee EP. Proteomics and metabolomics in kidney disease, including insights into etiology, treatment, and prevention. Clin J Am Soc Nephrol, 2020, 15(3): 404-411. doi:10.2215/CJN.07420619. |
[1] | Cheng Wen, Zhu Hui, Fu Lei, Zhang Weiyan, Zhang Liqun, Lu Yu. Development and application of an HPLC-MS/MS method for simultaneous determination of bedaquiline, pretomanid, and linezolid in plasma [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 613-622. |
[2] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
[3] | Ge Fei, Zhu Hui, Cheng Kai, Lu Yu, Xu Jian. Study on the determination of isoniazid and its metabolites concentration in plasma by high-performance liquid chromatography-mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 549-556. |
[4] | Senior Department of Tuberculosis, the th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Tuberculosis Control Branch of China Intrnational Exchange and Promotive Association for Medical and Health Care. Expert consensus on the clinical application of nucleic acid MALDI-TOF MS technique in the diagnosis of tuberculosis and non-tuberculosis mycobacteriosis [J]. Chinese Journal of Antituberculosis, 2023, 45(6): 543-558. |
[5] | WU Ming-qi, YAN Shi-chun, LIU Yu-qin, GUO Xin, WANG Mei-jie, TIAN Jing, HOU Shao-ying. Plasma proteomics analysis of diabetic patients complicated with pulmonary tuberculosis by iTRAQ technology [J]. Chinese Journal of Antituberculosis, 2022, 44(5): 442-449. |
[6] | WANG Xiu-jun, LIU Qiu-yue, CHEN Xiao-feng, YU Lei, MA Yan, HAN Fen. Study on plasma proteomics of patients with secondary pulmonary tuberculosis based on label-free quantitative technology [J]. Chinese Journal of Antituberculosis, 2021, 43(2): 159-165. |
[7] | Xi CHEN,Zhong-quan LIU,Bin WANG,Hui ZHU,Lei FU,Yuan-yuan LI,Yu LU. Evaluation of antituberculosis activities of 14 antituberculosis drugs in macrophage [J]. Chinese Journal of Antituberculosis, 2019, 41(9): 993-998. |
[8] | YANG Shuang,GUO Jing-wei,HU Yi-min,TAN Yun-hong,TAN Xiao,YUAN Shi-shan. Screening and identification of serological diagnostic antigens for tuberculosis [J]. Chinese Journal of Antituberculosis, 2019, 41(11): 1217-1222. |
[9] | ZHU Hui,LIU Zhong-quan,XIE Li,GUO Shao-chen,WANG Bin,FU Lei,LU Yu. Determination of bedaquiline plasma concentration by high performance liquid chromatography-mass spectrometry/mass spectrometry [J]. Chinese Journal of Antituberculosis, 2018, 40(12): 1319-1324. |
[10] | YANG Yu, XIE Bei, WU Ling, MENG Fan-rong, WANG Nan, LEI Jie, ZHANG Yan-bin, PENG De-hu, TAN Shou-yong, LIU Zhi-hui. Preliminary comparative analysis of serum proteins from cured pateints with pulmonary tuberculosis before and after treatment by two dimension electrophoresis [J]. Chinese Journal of Antituberculosis, 2017, 39(3): 315-317. |
[11] | HUANG Di-xi, TAN Shou-yong, LIU Zhi-hui. The present situation and progress of proteomics in the diagnosis of tuberculouspleural effusion [J]. Chinese Journal of Antituberculosis, 2016, 38(3): 180-184. |
[12] | GUO Shao-chen,ZHU Hui,XU Jian,HAO Lan-hu,WANG Bin, FU Lei,CHEN Ming-ting,ZHOU Lin,CHI Jun-ying, LU Yu. Study on pharmacokinetics and bioequivalence of rifampicin in fixed-dose combination [J]. Chinese Journal of Antituberculosis, 2014, 36(12): 1075-1079. |
[13] | HE Xiu-yun,ZHU Chuan-zhi, PANG Yu, HUANG Xiang-yu, JIANG Li-qi, ZHAO Yan-lin, ZHUANG Yu-hui. Quantitative proteomic analyses of isoniazid- and streptomycin-resistant and sensitive clinical isolates and H37Rv of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2013, 35(3): 173-178. |
[14] | FANG Su-fang, WENG Li-zhen, HUANG Ming-xiang, LI Xue-ling, GUO Qiao-ling, ZHENG Xiao-hu, CHEN Xiao-hong, ZHANG Li-shui, LIN Min-fang, LIU Tan-ye. Preliminary study on the application of protein fingerprinting technology for multidrug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2012, 34(1): 40-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||