Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (10): 1311-1317.doi: 10.19982/j.issn.1000-6621.20250166
• Original Articles • Previous Articles Next Articles
Chu Guangyan1, Li Ting1, Yu Jianing1, He Di1, Zhang Kun2, Hou Shaoying3(), Yan Shichun4(
)
Received:
2025-04-25
Online:
2025-10-10
Published:
2025-09-29
Contact:
Hou Shaoying,Email: Supported by:
CLC Number:
Chu Guangyan, Li Ting, Yu Jianing, He Di, Zhang Kun, Hou Shaoying, Yan Shichun. Building and evaluating a predictive model for secondary pulmonary tuberculosis based on Random Forest model[J]. Chinese Journal of Antituberculosis, 2025, 47(10): 1311-1317. doi: 10.19982/j.issn.1000-6621.20250166
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250166
指标 | 训练集[495例(名)] | 测试集[248例(名)] | |||||||
---|---|---|---|---|---|---|---|---|---|
观察组 (244例) | 对照组 (251名) | 统计 检验值 | P值 | 观察组 (123例) | 对照组 (125名) | 统计 检验值 | P值 | ||
性别[例(构成比,%)] | χ2=126.044 | <0.001 | χ2=3.843 | 0.950 | |||||
男性 | 78(31.97) | 203(80.88) | 53(43.19) | 98(78.40) | |||||
女性 | 166(68.03) | 48(19.12) | 70(56.91) | 27(21.60) | |||||
年龄[岁,M(Q1, Q3)] | 54.00 (44.00,65.00) | 52.00 (49.00,57.00) | Z=-1.027 | 0.304 | 51.00 (39.00,66.00) | 52.00 (50.00,58.00) | Z=-1.264 | 0.208 | |
谷草转氨酶(IU/L, | 29.27±44.78 | 19.90±3.82 | t=3.297 | 0.001 | 25.68±24.84 | 20.25±3.76 | t=2.341 | 0.021 | |
谷丙转氨酶(IU/L, | 26.23±72.47 | 22.28±7.80 | t=0.858 | 0.392 | 24.16±40.62 | 21.53±7.27 | t=0.693 | 0.493 | |
直接胆红素(μmol/L, | 6.19±7.27 | 5.84±2.57 | t=0.743 | 0.458 | 5.95±6.50 | 5.78±2.23 | t=0.255 | 0.801 | |
总蛋白(g/L, | 72.38±8.26 | 73.98±3.44 | t=-2.855 | 0.005 | 71.99±8.89 | 74.46±3.58 | t=-2.774 | 0.006 | |
白蛋白(g/L, | 38.54±6.54 | 45.15±2.21 | t=-15.201 | <0.001 | 38.18±6.34 | 45.10±1.92 | t=-11.243 | <0.001 | |
球蛋白(g/L, | 33.72±6.07 | 28.83±2.74 | t=11.671 | <0.001 | 33.98±8.63 | 29.36±2.91 | t=5.456 | <0.001 | |
谷氨酰转肽酶(IU/L, | 60.11±84.74 | 23.62±17.17 | t=6.682 | <0.001 | 62.88±115.68 | 20.76±11.76 | t=3.921 | <0.001 | |
碱性磷酸酶(IU/L, | 100.70±55.26 | 67.87±18.46 | t=8.942 | <0.001 | 96.84±45.28 | 66.92±18.41 | t=6.574 | <0.001 | |
甘油三酯(mmol/L, | 1.19±0.59 | 1.21±0.57 | t=-0.485 | 0.628 | 1.20±0.67 | 1.18±0.53 | t=0.235 | 0.820 | |
高密度脂蛋白(mmol/L, | 1.15±0.39 | 1.37±0.29 | t=-7.038 | <0.001 | 1.10±0.33 | 1.35±0.27 | t=-6.165 | <0.001 | |
总胆固醇(mmol/L, | 4.96±4.40 | 5.26±0.83 | t=-1.098 | 0.273 | 4.51±1.21 | 5.21±0.81 | t=-5.174 | <0.001 | |
低密度脂蛋白(mmol/L, | 2.42±0.78 | 3.18±0.69 | t=-11.813 | <0.001 | 2.30±0.76 | 3.17±0.69 | t=-9.001 | <0.001 | |
空腹血糖(mmol/L, | 5.31±1.15 | 5.49±0.52 | t=-2.164 | 0.031 | 5.28±0.91 | 5.47±0.52 | t=-1.874 | 0.063 | |
同型半胱氨酸(μmol/L, | 14.09±10.18 | 10.60±3.97 | t=5.078 | <0.001 | 13.58±8.32 | 10.53±3.29 | t=3.663 | <0.001 | |
尿素氮(mmol/L, | 5.02±2.29 | 4.81±1.15 | t=1.308 | 0.192 | 4.84±2.42 | 4.84±1.14 | t=-0.012 | 0.996 | |
肌酐(μmol/L, | 55.85±25.64 | 63.14±12.87 | t=-4.049 | <0.001 | 55.31±25.59 | 63.12±13.26 | t=-2.897 | 0.004 | |
尿酸(μmol/L, | 314.34±133.31 | 295.09±67.39 | t=2.053 | 0.041 | 303.06±142.48 | 292.30±70.74 | t=0.719 | 0.470 | |
二氧化碳(mmol/L, | 24.93±2.79 | 25.43±1.87 | t=-2.394 | 0.017 | 25.01±2.89 | 25.08±1.89 | t=-0.207 | 0.830 | |
淋巴细胞计数(×109/L, | 1.73±0.78 | 1.96±0.52 | t=-3.950 | <0.001 | 1.82±0.86 | 2.01±0.61 | t=-1.923 | 0.057 | |
平均血红蛋白量(pg, | 29.36±2.92 | 30.73±1.68 | t=-6.501 | <0.001 | 29.14±2.52 | 30.60±1.93 | t=-4.895 | <0.001 | |
红细胞平均体积(fl, | 91.21±7.07 | 91.48±4.36 | t=-0.525 | 0.600 | 90.51±6.21 | 90.53±5.17 | t=-0.021 | 0.987 | |
红细胞分布宽度(%, | 45.90±4.09 | 42.60±2.85 | t=10.620 | <0.001 | 46.07±6.14 | 41.79±2.70 | t=6.842 | <.001 | |
单核细胞百分比(%, | 7.23±2.43 | 6.45±1.50 | t=4.367 | <0.001 | 6.95±2.02 | 6.62±1.45 | t=1.394 | 0.165 | |
嗜酸性粒细胞计数(×109/L, | 0.11±0.13 | 0.12±0.10 | t=-0.908 | 0.364 | 0.14±0.14 | 0.11±0.08 | t=2.295 | 0.022 | |
嗜碱性粒细胞计数(×109/L, | 0.03±0.02 | 0.03±0.02 | t=-0.209 | 0.834 | 0.03±0.02 | 0.03±0.01 | t=1.194 | 0.234 | |
嗜酸性粒细胞百分比(%, | 1.52±1.49 | 2.04±1.73 | t=-3.719 | <0.001 | 1.98±2.03 | 1.90±1.34 | t=0.355 | 0.730 | |
单核细胞计数(×109/L, | 0.56±0.27 | 0.37±0.11 | t=10.451 | <0.001 | 0.57±0.27 | 0.38±0.10 | t=7.345 | <0.001 | |
血小板压积(%, | 0.29±0.10 | 0.26±0.05 | t=4.476 | <0.001 | 0.30±0.08 | 0.25±0.05 | t=4.864 | <0.001 | |
红细胞压积(%, | 0.41±0.06 | 0.41±0.03 | t=-0.053 | 0.958 | 0.41±0.05 | 0.41±0.03 | t=0.793 | 0.429 | |
中性粒细胞百分比(%, | 66.51±12.08 | 56.47±8.22 | t=10.990 | <0.001 | 65.86±12.97 | 56.01±7.29 | t=7.082 | <0.001 | |
大型血小板比率(%, | 24.12±8.52 | 27.61±7.08 | t=-5.051 | <0.001 | 24.09±8.48 | 28.23±6.78 | t=-4.044 | <0.001 | |
白细胞(×109/L, | 7.88±3.12 | 5.76±1.18 | t=10.080 | <0.001 | 8.47±4.54 | 5.73±1.03 | t=6.351 | <0.001 | |
红细胞(×1012/L, | 4.52±0.63 | 4.51±0.39 | t=0.147 | 0.884 | 4.56±0.56 | 4.50±0.37 | t=1.001 | 0.316 | |
血红蛋白(g/L, | 132.25±21.48 | 138.52±12.53 | t=-4.022 | <0.001 | 132.84±18.57 | 137.37±11.21 | t=-2.234 | 0.027 | |
中性粒细胞计数(×109/L, | 5.45±2.98 | 3.28±0.96 | t=10.973 | <0.001 | 5.85±4.45 | 3.20±0.69 | t=6.353 | <0.001 | |
红细胞分布宽度(%, | 13.60±1.59 | 12.70±1.00 | t=7.666 | <0.001 | 13.75±1.95 | 12.63±1.17 | t=5.274 | <0.001 | |
平均血小板体积(fl, | 9.90±1.27 | 10.36±0.89 | t=-4.783 | <0.001 | 10.41±6.50 | 10.44±0.85 | t=-0.059 | 0.952 | |
尿液酸碱度(pH, | 6.12±0.62 | 6.18±0.55 | t=-1.241 | 0.215 | 6.02±0.80 | 6.26±0.51 | t=-2.684 | 0.008 | |
潜血( | 0.19±0.55 | 0.64±1.06 | t=-6.205 | <0.001 | 0.29±0.75 | 0.52±0.96 | t=-1.964 | 0.051 | |
尿比重[例(构成比,%)] | χ2=23.062 | <0.001 | χ2=0.013 | 0.909 | |||||
正常 | 19(7.79) | 53(21.12) | 20(16.26) | 21(16.80) | |||||
异常 | 225(92.21) | 198(78.88) | 103(83.74) | 104(83.20) | |||||
血小板分布宽度[fl,M(Q1, Q3)] | 15.90 (15.50,16.10) | 12.00 (11.03,13.30) | Z=-14.287 | <0.001 | 16.00 (15.60,16.20) | 11.95 (11.10,13.40) | Z=-8.949 | <0.001 | |
白球比[M(Q1, Q3)] | 1.19 (0.96,1.39) | 1.60 (1.50,1.70) | Z=-14.519 | <0.001 | 1.17 (0.97,1.42) | 1.60 (1.40,1.70) | Z=-8.867 | <0.001 | |
间接胆红素[μmol/L,M(Q1, Q3)] | 7.75 (5.00,12.70) | 17.50 (14.43,19.30) | Z=-13.438 | <0.001 | 7.10 (5.30,10.50) | 16.80 (14.12,18.60) | Z=-10.434 | <0.001 | |
平均血红蛋白浓度[g/L, M(Q1, Q3)] | 322.00 (317.00,328.00) | 336.00 (331.00,342.00) | Z=-13.527 | <0.001 | 322.00 (317.00,327.00) | 338.00 (331.25,344.00) | Z=-9.921 | <0.001 | |
总胆红素[μmol/L,M(Q1, Q3)] | 13.10 (9.00,19.80) | 22.35 (18.60,27.18) | Z=-11.130 | <0.001 | 12.00 (9.30,16.50) | 22.00 (18.15,26.10) | Z=-9.066 | <0.001 | |
总胆汁酸[μmol/L,M(Q1, Q3)] | 2.88 (1.87,5.20) | 4.60 (3.60,5.50) | Z=-7.329 | <0.001 | 2.67 (1.60,5.05) | 5.00 (4.00,5.68) | Z=-6.434 | <0.001 | |
淋巴细胞百分比[%,M(Q1, Q3)] | 22.35 (15.30,32.88) | 34.45 (28.85,39.78) | Z=-10.315 | <0.001 | 23.10 (16.20,31.20) | 35.20 (29.22,39.90) | Z=-7.381 | <0.001 | |
谷草转氨酶/谷丙转氨酶比值 [M(Q1, Q3)] | 1.44 (1.02,1.81) | 0.94 (0.77,1.13) | Z=-10.548 | <0.001 | 1.40 (0.98,1.74) | 0.95 (0.79,1.20) | Z=-5.572 | <0.001 |
指标 | 观察组(367例) | 对照组(376例) | 统计检验值 | P值 |
---|---|---|---|---|
年龄[岁,M(Q1, Q3)] | 53.00(40.50,65.00) | 52.00(49.00,58.00) | Z=-0.084 | 0.938 |
白蛋白(g/L, | 38.42±6.47 | 45.14±2.13 | t=-18.891 | <0.001 |
尿比重[例(构成比,%)] | χ2=34.670 | <0.001 | ||
正常 | 27(7.36) | 86(22.87) | ||
异常 | 340(92.64) | 290(77.13) | ||
总胆红素[μmol/L,M(Q1, Q3)] | 12.80(9.10,19.00) | 22.25(18.40,26.90) | Z=-14.313 | <0.001 |
间接胆红素[μmol/L,M(Q1, Q3)] | 7.60(5.05,11.80) | 17.40(14.30,19.10) | Z=-16.994 | <0.001 |
白球比[M(Q1, Q3)] | 1.17(0.97,1.40) | 1.60(1.50,1.70) | Z=-17.030 | <0.001 |
总胆汁酸[μmol/L, M(Q1, Q3)] | 2.80(1.79,5.12) | 4.60(3.70,5.50) | Z=-9.675 | <0.001 |
谷草转氨酶/谷丙转氨酶比值[M(Q1, Q3)] | 1.41(1.02,1.79) | 0.95(0.77,1.15) | Z=-11.951 | <0.001 |
淋巴细胞百分比[%,M(Q1, Q3)] | 22.90(15.50,32.55) | 34.60(29.08,39.90) | Z=-12.684 | <0.001 |
血小板分布宽度[fl,M(Q1, Q3)] | 15.90(15.50,16.20) | 12.00(11.10,13.30) | Z=-16.907 | <0.001 |
平均血红蛋白浓度[g/L,M(Q1, Q3)] | 322.00(317.00,328.00) | 336.00(331.00,343.00) | Z=-16.843 | <0.001 |
[1] |
Gourgas O, Lemire G, Eaton AJ, et al. Author Correction: Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia. Nat Commun, 2024, 15(1):3655. doi:10.1038/s41467-024-47898-x.
pmid: 38688929 |
[2] | 罗欢, 朱世琴, 沈玉兰, 等. 基于随机森林算法的糖尿病周围神经病变预测模型构建与验证. 中国糖尿病杂志, 2024, 32(8):591-594. doi:10.3969/j.issn.1006-6187.2024.08.006. |
[3] | Belur Nagaraj S, Pena MJ, Ju W, et al. Machine-learning-based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab, 2020, 22(12):2479-2486. doi:10.1111/dom.14178. |
[4] | 符剑, 陆峰, 王小平, 等. 基于多因素回归分析南通地区肺结核发病预测模型构建. 公共卫生与预防医学, 2023, 34(6):57-60. doi:10.3969/j.issn.1006-2483.2023.06.013. |
[5] | Speiser JL. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data. Biomed Inform, 2021, 117:103763. doi:10.1016/j.jbi.2021.103763. |
[6] | Şahin F, Yazar E, Yıldız P. Prominent features of platelet count, plateletcrit, mean platelet volume and platelet distribution width in pulmonary tuberculosis. Multidiscip Respir Med, 2012, 7(1):38. doi:10.1186/2049-6958-7-38. |
[7] | 梁建英, 杜元平, 张昌艳, 等. 肺结核患者血清中PCT、CRP、IgG抗PPD-IgG和白细胞计数的临床诊断意义. 标记免疫分析与临床, 2018, 25(7):997-1000,1004. doi:10.11748/bjmy.issn.1006-1703.2018.07.019. |
[8] | 柯学, 李国保, 沈生荣. 结核病的营养治疗. 中华结核和呼吸杂志, 2020, 43(1):8-10. doi:10.3760/cma.j.issn.1001-0939.2020.01.003. |
[9] |
Nikitina IY, Panteleev AV, Kosmiadi GA, et al. Th1, Th17, and Th1Th17 Lymphocytes during Tuberculosis: Th1 Lymphocytes Predominate and Appear as Low-Differentiated CXCR3+CCR6+ Cells in the Blood and Highly Differentiated CXCR3+/-CCR6- Cells in the Lungs. J Immunol, 2018, 200(6):2090-2103. doi:10.4049/jimmunol.1701424.
pmid: 29440351 |
[10] | 谢蓝田, 阮桂仁, 刘晓清, 等. 212例活动性结核病患者外周血淋巴细胞亚群特点:单中心描述性研究. 协和医学杂志, 2023, 14(1):131-138. doi:10.12290/xhyxzz.2022-0645. |
[11] |
Gazzin S, Vitek L, Watchko J, et al. A novel perspective on the biology of bilirubin in health and disease. Trends Mol Med, 2016, 22(9):758-768. doi:10.1016/j.molmed.2016.07.004.
pmid: 27515064 |
[12] | 王飞, 杨滨. 冠状动脉粥样硬化性心脏病患者血清总胆红素水平与外周动脉疾病的相关性研究. 中国医药, 2018, 13(12):1796-1799. doi:10.3760/j.issn.1673-4777.2018.12.008. |
[13] | 王苏, 张京梅, 张艳艳, 等. 吸烟与男性冠状动脉粥样硬化性心脏病患者血清总胆红素相关性研究. 中国医药, 2018, 13(11):1616-1619. doi:10.3760/j.issn.1673-4777.2018.11.005. |
[14] | Duman H, Özyurt S. Low serum bilirubin levels associated with subclinical atherosclerosis in patients with obstructive sleep apnea. Interv Med Appl Sci, 2018, 10(4):179-185. doi:10.1556/1646.10.2018.39. |
[15] |
Guo X, Yang Y, Zhang B, et al. Nutrition and clinical manifestations of pulmonary tuberculosis: A cross-sectional study in Shandong province, China. Asia Pac J Clin Nutr, 2022, 31(1):41-48. doi:10.6133/apjcn.202203_31(1).0005.
pmid: 35357102 |
[16] | Church RJ, Watkins PB. Serum biomarkers of drug-induced liver injury: Current status and future directions. J Dig Dis, 2019, 20(1):2-10. doi:10.1111/1751-2980.12684. |
[17] |
Sang D, Lin K, Yang Y, et al. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell, 2023, 186(25):5500-5516.e21. doi:10.1016/j.cell.2023.10.025.
pmid: 38016470 |
[18] | 赵慈余, 陆玲娜, 邱莲女, 等. 肺结核患者外周血T细胞活化亚群和细胞因子的变化. 中国卫生检验杂志, 2019, 29(6):705-708,712. |
[19] | An HR, Bai XJ, Liang JQ, et al. The relationship between absolute counts of lymphocyte subsets and clinical features in patients with pulmonary tuberculosis. Clin Respir J, 2022, 16(5):369-379. doi:10.1111/crj.13490. |
[20] | Chen LY, Liu C, Liang T, et al. Monocyte-to-Lymphocyte Ratio was an independent factor of the severity of Spinal Tuberculosis. Oxid Med Cell Longev, 2022, 2022: 7340330. doi:10.1155/2022/7340330. |
[21] | Rajamanickam A, Munisankar S, Dolla CK, et al. Undernutrition is associated with perturbations in T cell-, B cell-, monocyte- and dendritic cell-subsets in latent Mycobacterium tuberculosis infection. PLoS One, 2019, 14(12):e0225611. doi:10.1371/journal.pone.0225611. |
[1] | Zhang Yaning, Yang Peirong, Yan Chuanyuan, Li Hongbing, Xiao Yuyu, Zhang Lu. Construction and validation of a prediction model for pulmonary tuberculosis-affected households facing catastrophic costs in Baoji City [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1171-1179. |
[2] | Liu Juxiu, Zhang Jianhua, Wen Junjun, Jiang Xiaoshuang. Analysis and trend prediction of Mycobacterium tuberculosis drug resistance in Jilin City [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 348-354. |
[3] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[4] | Liu Ling, Zeng Yi, Wang Jin, Liu Xiaoling, Liu Yan, Lin Feishen, Guo Jing. Construction and evaluation of a model for predicting malnutrition in patients with pulmonary tuberculosis and diabetes mellitus [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 903-909. |
[5] | Geng Junling, Zhang Yinan, Pan Hongqiu. Establishment and validation of a risk prediction model for drug-induced liver injury in patients with tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 699-706. |
[6] | Teng Chong, Wang Yulan, Liu Liu, Zhang Fang, Huang Fei, Li Tao, Zhao Bing, Zhao Yanlin, Ou Xichao. Analysis of the epidemiological characteristics and prediction for the reported incidence of pulmonary tuberculosis in Dongcheng District, Beijing from 2013 to 2022 [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 397-402. |
[7] | Kong Hanhan, Zhang Jiaohong, Zeng Jianfeng, Cao Jing. Construction and validation of frailty risk prediction model in elderly patients with pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 85-91. |
[8] | Zhou Wenyong, Wen Zexuan, Gao Mengxian, Li Tao, Zhang Hui, Wang Weibing. Prediction of the effectiveness and impact of the free healthcare policy for tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2023, 45(9): 845-856. |
[9] | Ren Feilin, Liu Xiaoqi, Jin Meihua, Sun Xiuxiu. Study on the predictive effect of seasonal auto regressive integrated moving average model on the incidence of pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(5): 514-519. |
[10] | Sun Minghao, Duan Yuqi, Zheng Liang, Yu Shengnan, Cheng Chuanlong, Zuo Hui, Chen Ming, Li Xiujun. Application of ARIMA, ARIMAX, and NGO-LSTM models in forecasting the incidence of tuberculosis cases in Liaocheng City, Shandong Province [J]. Chinese Journal of Antituberculosis, 2023, 45(12): 1177-1185. |
[11] | Chen Daiquan, Lin Shufang, Dai Zhisong, Zhou Yinfa, Chen Kun. Construction and validation of a nomogram for predicting unfavorable treatment outcomes among patients with rifampicin-sensitive tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(10): 957-966. |
[12] | KANG Wan-li, LI Tian-jing, WANG Sai-sai, LI Chang-hua, ZHAO Qiu-yue, ZHENG Su-hua, LIU Yang. Study on the trend and prediction of reported incidence of national active pulmonary tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2022, 44(7): 681-684. |
[13] | ZHUANG Li, LU Zhen-hui, CEN Jun, MA Zi-feng, LI Cui, JIANG Yu-wei, ZHANG Hui-yong, ZHANG Shun-xian. Establishment and prediction of autoregressive integrated moving average model of monthly reported deaths of pulmonary tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2022, 44(4): 375-380. |
[14] | LEI Yu, HE Li-qian, ZHANG Guang-chuan, LAI Keng, XIE Wei, DU Yu-hua. Establishment of ARIMA model and its application on the prediction of pulmonary tuberculosis incidence in Guangzhou [J]. Chinese Journal of Antituberculosis, 2021, 43(6): 569-575. |
[15] | YU She-gen, JIA Zhong-wei. Application of a dynamic model on the prediction of pulmonary tuberculosis incidence and control strategy evaluation in Tianjin, China [J]. Chinese Journal of Antituberculosis, 2021, 43(10): 1039-1045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||