Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (6): 569-575.doi: 10.3969/j.issn.1000-6621.2021.06.009
• Original Articles • Previous Articles Next Articles
LEI Yu*, HE Li-qian, ZHANG Guang-chuan, LAI Keng, XIE Wei, DU Yu-hua()
Received:
2021-01-23
Online:
2021-06-10
Published:
2021-06-02
Contact:
DU Yu-hua
E-mail:du.yuhua@163.com
LEI Yu, HE Li-qian, ZHANG Guang-chuan, LAI Keng, XIE Wei, DU Yu-hua. Establishment of ARIMA model and its application on the prediction of pulmonary tuberculosis incidence in Guangzhou[J]. Chinese Journal of Antituberculosis, 2021, 43(6): 569-575. doi: 10.3969/j.issn.1000-6621.2021.06.009
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.06.009
参数 | ARIMA(1,1,1)×(1,1,1)12 | ARIMA(1,1,1)×(0,1,1)12 | ARIMA(1,1,1)×(0,1,2)12 | ||||
---|---|---|---|---|---|---|---|
估计值 | $s\bar{x}$值 | 估计值 | $s\bar{x}$值 | 估计值 | $s\bar{x}$值 | ||
AR1 | 0.192 | 0.137 | 0.230 | 0.134 | 0.192 | 0.140 | |
MA1 | -0.812 | 0.079 | -0.830 | 0.077 | -0.812 | 0.080 | |
SAR1 | -0.168 | 0.175 | - | - | -0.867 | 0.103 | |
SMA1 | -0.523 | 0.175 | -0.654 | 0.093 | -0.097 | 0.112 | |
AIC值 | 1216.430 | 1215.300 | 1216.550 | ||||
P值 | 0.752 | 0.693 | 0.746 |
月份 | 实际例数 | 预测例数 | 95%CI值下限 | 95%CI值上限 | 绝对误差 | 绝对误差百分比(%) |
---|---|---|---|---|---|---|
1 | 701 | 705 | 575 | 835 | 4 | 0.57 |
2 | 494 | 546 | 409 | 682 | 52 | 10.53 |
3 | 671 | 832 | 692 | 973 | 161 | 23.99 |
4 | 655 | 821 | 677 | 964 | 166 | 25.34 |
5 | 695 | 814 | 668 | 959 | 119 | 17.12 |
6 | 746 | 743 | 596 | 891 | 3 | 0.40 |
7 | 754 | 785 | 636 | 933 | 31 | 4.11 |
8 | 769 | 763 | 614 | 912 | 6 | 0.78 |
9 | 693 | 687 | 537 | 836 | 6 | 0.87 |
10 | 666 | 677 | 527 | 827 | 11 | 1.65 |
11 | 650 | 644 | 494 | 794 | 6 | 0.92 |
12 | 617 | 625 | 474 | 775 | 8 | 1.30 |
参数 | ARIMA(1,1,1)×(1,1,1)12 | ARIMA(1,1,1)×(0,1,1)12 | ARIMA(1,1,1)×(0,1,2)12 | ||||
---|---|---|---|---|---|---|---|
估计值 | $s\bar{x}$值 | 估计值 | $s\bar{x}$值 | 估计值 | $s\bar{x}$值 | ||
AR1 | 0.191 | 0.154 | 0.244 | 0.153 | 0.195 | 0.158 | |
MA1 | -0.816 | 0.094 | -0.842 | 0.095 | -0.818 | 0.096 | |
SAR1 | -0.217 | 0.194 | - | - | - | - | |
SMA1 | -0.483 | 0.207 | -0.658 | 0.109 | -0.695 | 0.118 | |
AIC值 | 1090.080 | 1089.260 | 1090.300 | ||||
P值 | 0.890 | 0.847 | 0.773 |
月份 | 实际例数 | 预测例数 | 95%CI值下限(例) | 95%CI值上限(例) | 绝对误差 | 绝对误差百分比(%) |
---|---|---|---|---|---|---|
1 | 783 | 774 | 640 | 909 | 9 | 1.15 |
2 | 607 | 608 | 465 | 752 | 1 | 0.16 |
3 | 847 | 911 | 763 | 1058 | 64 | 7.56 |
4 | 858 | 877 | 726 | 1028 | 19 | 2.21 |
5 | 817 | 879 | 725 | 1033 | 62 | 7.59 |
6 | 742 | 821 | 663 | 978 | 79 | 10.65 |
7 | 819 | 831 | 671 | 991 | 12 | 1.47 |
8 | 771 | 827 | 664 | 990 | 56 | 7.26 |
9 | 706 | 741 | 575 | 906 | 35 | 4.96 |
10 | 712 | 709 | 540 | 877 | 3 | 0.42 |
11 | 673 | 694 | 523 | 866 | 21 | 3.12 |
12 | 614 | 690 | 516 | 864 | 76 | 12.38 |
[1] |
赖铿, 吴桂锋, 雷宇, 等. 2014—2018年广州市肺结核发病空间分布特征分析. 中国防痨杂志, 2020,42(4):327-334. doi: 10.3969/j.issn.1000-6621.2020.04.006.
doi: 10.3969/j.issn.1000-6621.2020.04.006 |
[2] |
张广川, 赖铿, 杜雨华, 等. 2014—2019年广州市涂阳肺结核患者流行特征分析. 中国防痨杂志, 2021,43(2):119-125. doi: 10.3969/j.issn.1000-6621.2021.02.004.
doi: 10.3969/j.issn.1000-6621.2021.02.004 |
[3] |
刘峰, 朱妮, 邱琳, 等. ARIMA乘积季节模型在陕西省手足口病预测中的应用. 中华流行病学杂志, 2016,37(8):1117-1120. doi: 10.3760/cma.j.issn.0254-6450.2016.08.013.
doi: 10.3760/cma.j.issn.0254-6450.2016.08.013 |
[4] |
谭慧仪, 李纯颖, 肖岚, 等. 湖南省2009—2018年百日咳流行特征分析与发病趋势预测. 中华疾病控制杂志, 2020,24(11):1263-1268. doi: 10.16462/j.cnki.zhjbkz.2020.11.005.
doi: 10.16462/j.cnki.zhjbkz.2020.11.005 |
[5] | 任正洪. 2005—2011年我国肺结核发病的时间流行病学特征及趋势. 中国卫生统计, 2013,30(2):158-161. |
[6] | 孙彩云, 杨晓静. 乘积ARIMA模型的建立及应用. 华北科技学院学报, 2008,5(2):85-89. |
[7] |
张顺先, 邱磊, 张少言, 等. ARIMA模型的建立及对中国肺结核月报告例数的预测效果研究. 中国防痨杂志, 2020,42(6):614-620. doi: 10.3969/j.issn.1000-6621.2020.06.014.
doi: 10.3969/j.issn.1000-6621.2020.06.014 |
[8] |
Wang H, Tian CW, Wang WM, et al. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect, 2018,146(8):935-939. doi: 10.1017/S0950268818001115.
doi: 10.1017/S0950268818001115 URL |
[9] |
胡文穗, 刘伟, 侯建荣, 等. 2010—2019年广州市肺结核流行特征及时空聚集性. 中华疾病控制杂志, 2020,24(9):1037-1041. doi: 10.16462/j.cnki.zhjbkz.2020.09.009.
doi: 10.16462/j.cnki.zhjbkz.2020.09.009 |
[10] | 吕锐利. 春节效应对传染病网络直报工作的影响. 中国热带医学, 2014,14(11):1364-1366. |
[11] |
言晨绮, 王瑞白, 刘海灿, 等. ARIMA模型预测2018—2019年我国肺结核发病趋势的应用. 中华流行病学杂志, 2019,40(6):633-637. doi: 10.3760/cma.j.issn.0254-6450.2019.06.006.
doi: 10.3760/cma.j.issn.0254-6450.2019.06.006 |
[12] |
付之鸥, 周扬, 陈诚, 等. 时间序列分析与机器学习方法在预测肺结核发病趋势中的应用. 中国卫生统计, 2020,37(2):190-195. doi: 10.3969/j.issn.1002-3674.2020.02.008.
doi: 10.3969/j.issn.1002-3674.2020.02.008 |
[13] |
傅颖, 张晓龙, 蒋骏, 等. SARIMA模型在苏州市肺结核发病预测中的应用. 中国热带医学, 2020,20(4):339-342. doi: 10.13604/j.cnki.46-1064/r.2020.04.09.
doi: 10.13604/j.cnki.46-1064/r.2020.04.09 |
[14] |
游楠楠, 刘巧, 李忠奇, 等. 基于ARIMA模型的江苏省不同地区肺结核发病趋势的预测. 南京医科大学学报(自然科学版), 2020,40(6):909-914. doi: 10.7655/nydxbns20200626.
doi: 10.7655/nydxbns20200626 |
[15] |
曾洁文. 基于时间序列方法建立广东省肺结核病发病预测模型. 赤峰学院学报(自然科学版), 2019,35(6):11-13. doi: 10.13398/j.cnki.issn1673-260x.2019.06.005.
doi: 10.13398/j.cnki.issn1673-260x.2019.06.005 |
[16] | 赖晓蓥, 钱俊. ARIMA-LSTM-XGBoost加权组合模型在肺结核发病趋势预测的研究. 现代预防医学, 2021,48(1):5-9. |
[17] |
Pang Y, Liu Y, Du J, et al. Impact of COVID-19 on tuberculosis control in China. Int J Tuberc Lung Dis, 2020,24(5):545-547. doi: 10.5588/ijtld.20.0127.
doi: 10.5588/ijtld.20.0127 URL |
[18] |
Caihong X, Tao L, Dongmei H, et al. Predicted Impact of the COVID-19 Responses on Deaths of Tuberculosis—China, 2020. China CDC Weekly, 2021,3(2):21-24. doi: 10.46234/ccdcw2021.004.
doi: 10.46234/ccdcw2021.004 URL |
[1] | Liu Juxiu, Zhang Jianhua, Wen Junjun, Jiang Xiaoshuang. Analysis and trend prediction of Mycobacterium tuberculosis drug resistance in Jilin City [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 348-354. |
[2] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[3] | Liu Ling, Zeng Yi, Wang Jin, Liu Xiaoling, Liu Yan, Lin Feishen, Guo Jing. Construction and evaluation of a model for predicting malnutrition in patients with pulmonary tuberculosis and diabetes mellitus [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 903-909. |
[4] | Geng Junling, Zhang Yinan, Pan Hongqiu. Establishment and validation of a risk prediction model for drug-induced liver injury in patients with tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 699-706. |
[5] | Teng Chong, Wang Yulan, Liu Liu, Zhang Fang, Huang Fei, Li Tao, Zhao Bing, Zhao Yanlin, Ou Xichao. Analysis of the epidemiological characteristics and prediction for the reported incidence of pulmonary tuberculosis in Dongcheng District, Beijing from 2013 to 2022 [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 397-402. |
[6] | Kong Hanhan, Zhang Jiaohong, Zeng Jianfeng, Cao Jing. Construction and validation of frailty risk prediction model in elderly patients with pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 85-91. |
[7] | Zhou Wenyong, Wen Zexuan, Gao Mengxian, Li Tao, Zhang Hui, Wang Weibing. Prediction of the effectiveness and impact of the free healthcare policy for tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2023, 45(9): 845-856. |
[8] | Ren Feilin, Liu Xiaoqi, Jin Meihua, Sun Xiuxiu. Study on the predictive effect of seasonal auto regressive integrated moving average model on the incidence of pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(5): 514-519. |
[9] | Sun Minghao, Duan Yuqi, Zheng Liang, Yu Shengnan, Cheng Chuanlong, Zuo Hui, Chen Ming, Li Xiujun. Application of ARIMA, ARIMAX, and NGO-LSTM models in forecasting the incidence of tuberculosis cases in Liaocheng City, Shandong Province [J]. Chinese Journal of Antituberculosis, 2023, 45(12): 1177-1185. |
[10] | Chen Daiquan, Lin Shufang, Dai Zhisong, Zhou Yinfa, Chen Kun. Construction and validation of a nomogram for predicting unfavorable treatment outcomes among patients with rifampicin-sensitive tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(10): 957-966. |
[11] | KANG Wan-li, LI Tian-jing, WANG Sai-sai, LI Chang-hua, ZHAO Qiu-yue, ZHENG Su-hua, LIU Yang. Study on the trend and prediction of reported incidence of national active pulmonary tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2022, 44(7): 681-684. |
[12] | ZHUANG Li, LU Zhen-hui, CEN Jun, MA Zi-feng, LI Cui, JIANG Yu-wei, ZHANG Hui-yong, ZHANG Shun-xian. Establishment and prediction of autoregressive integrated moving average model of monthly reported deaths of pulmonary tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2022, 44(4): 375-380. |
[13] | YU She-gen, JIA Zhong-wei. Application of a dynamic model on the prediction of pulmonary tuberculosis incidence and control strategy evaluation in Tianjin, China [J]. Chinese Journal of Antituberculosis, 2021, 43(10): 1039-1045. |
[14] | ZHANG Shun-xian, QIU Lei, ZHANG Shao-yan, LI Cui, HU Jun, TIAN Li-ming, LU Zhen-hui. A study of prediction effect of autoregressive integrated moving average model on the monthly reported pulmonary tuberculosis cases in China [J]. Chinese Journal of Antituberculosis, 2020, 42(6): 614-620. |
[15] | Hong-xia FANG,Guang-rong ZHANG,Yu-bao QIN,Zhi-min XIE,Keng LAI,Cheng-zhang HUANG,Yan WANG,Wen-long HE,Kai-qiao ZHENG,Zhi-kai XIAO,Chang-wei LIU,Jian-ping LIANG,Zhi-cong CHEN. Prediction models for latent tuberculosis infection among contacts of tuberculosis patients in an institutionalized population [J]. Chinese Journal of Antituberculosis, 2019, 41(9): 936-945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||