Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (6): 576-583.doi: 10.3969/j.issn.1000-6621.2021.06.010
• Original Articles • Previous Articles Next Articles
ZHANG Lei, LI Yuan-yuan, CHEN Xi, LIU Hai-ting, XU Jian, WANG Ning, DING Yang-ming, LU Yu()
Received:
2021-03-15
Online:
2021-06-10
Published:
2021-06-02
Contact:
LU Yu
E-mail:luyu4876@hotmail.com
ZHANG Lei, LI Yuan-yuan, CHEN Xi, LIU Hai-ting, XU Jian, WANG Ning, DING Yang-ming, LU Yu. Study of the mechanism of the new antidrug-resistant tuberculosis drug pyrifazimine mediated by quinone oxidoreductase[J]. Chinese Journal of Antituberculosis, 2021, 43(6): 576-583. doi: 10.3969/j.issn.1000-6621.2021.06.010
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.06.010
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(10):893-902. doi: 10.1056/NEJMoa1901814.
doi: 10.1056/NEJMoa1901814 URL |
[3] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[4] |
中华医学会结核病学分会. 中国耐多药和利福平耐药结核病治疗专家共识(2019年版). 中华结核和呼吸杂志, 2019,42(10):733-749. doi: 10.3760/cma.j.issn.1001-0939.2019.10.006.
doi: 10.3760/cma.j.issn.1001-0939.2019.10.006 |
[5] |
Lu Y, Zheng M, Wang B, et al. Clofazimine Analogs with Efficacy against Experimental Tuberculosis and Reduced Potential for Accumulation. Antimicrobial Agents and Chemotherapy, 2011,55(11):5185-5193. doi: 10.1128/AAC.00699-11.
doi: 10.1128/AAC.00699-11 URL |
[6] |
张叶, 李媛媛, 徐建, 等. 吡法齐明抗耐药结核分枝杆菌作用机制的初步研究. 中国防痨杂志, 2019,41(11):1160-1166. doi: 10.3969/j.issn.1000-6621.2019.11.004.
doi: 10.3969/j.issn.1000-6621.2019.11.004 |
[7] |
Rao PV, Krishna CM, Zigler JJ. Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase. J Biol Chem, 1992,267(1):96-102.
pmid: 1370456 |
[8] |
Zheng Q, Song Y, Zhang W, et al. Structural views of quinone oxidoreductase from Mycobacterium tuberculosis reveal large conformational changes induced by the co-factor. FEBS J, 2015,282(14):2697-2707. doi: 10.1111/febs.13312.
doi: 10.1111/febs.13312 URL |
[9] |
Makafe GG, Hussain M, Surineni G, et al. Quinoline Derivatives Kill Mycobacterium tuberculosis by Activating Glutamate Kinase. Cell Chem Biol, 2019,26(8):1187-1194. doi: 10.1016/j.chembiol.2019.05.003.
doi: 10.1016/j.chembiol.2019.05.003 URL |
[10] |
Xu J, Wang B, Fu L, et al. In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019,63(5):e02155-18. doi: 10.1128/AAC.02155-18.
doi: 10.1128/AAC.02155-18 |
[11] |
李聃, 盛莉, 赵曼曼, 等. 新型抗结核化合物TBI-166在比格犬体内的生物利用度. 国际药学研究杂志, 2015,42(2):194-198. doi: 10.13220/j.cnki.jipr.2015.02.013.
doi: 10.13220/j.cnki.jipr.2015.02.013 |
[12] |
Zhang Y, Zhu H, Fu L, et al. Identifying Regimens Containing TBI-166, a New Drug Candidate against Mycobacterium tuberculosis In Vitro and In Vivo. Antimicrob Agents Chemother, 2019,63(7):e02496-18. doi: 10.1128/AAC.02496-18.
doi: 10.1128/AAC.02496-18 |
[13] |
Zhu H, Fu L, Wang B, et al. Activity of Clofazimine and TBI-166 against Mycobacterium tuberculosis in Different Administration Intervals in Mouse Tuberculosis Models. Antimicrob Agents Chemother, 2021,65(4):e02164-20. doi: 10.1128/AAC.02164-20.
doi: 10.1128/AAC.02164-20 |
[14] |
Bolton JL, Trush MA, Penning TM, et al. Role of quinones in toxicology. Chem Res Toxicol, 2000,13(3):135-160. doi: 10.1021/tx9902082.
doi: 10.1021/tx9902082 pmid: 10725110 |
[15] |
Yano T, Kassovska-Bratinova S, Teh JS, et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem, 2011,286(12):10276-10287. doi: 10.1074/jbc.M110.200501.
doi: 10.1074/jbc.M110.200501 URL |
[16] |
张姗姗, 王彦, 李德东, 等. NADH和NADPH代谢和功能的研究进展. 第二军医大学学报, 2011,32(11):1239-1243. doi: 10.3724/SP.J.1008.2011.01239.
doi: 10.3724/SP.J.1008.2011.01239 |
[17] |
Lee EH, Baek SY, Park JY, et al. Rifampicin activates AMPK and alleviates oxidative stress in the liver as mediated with Nrf2 signaling. Chem Biol Interact, 2020,315:108889. doi: 10.1016/j.cbi.2019.108889.
doi: 10.1016/j.cbi.2019.108889 URL |
[18] |
Islam MM, Hameed H, Mugweru J, et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics, 2017,44(1):21-37. doi: 10.1016/j.jgg.2016.10.002.
doi: 10.1016/j.jgg.2016.10.002 URL |
[19] |
Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem, 2020,467(1/2):1-12. doi: 10.1007/s11010-019-03667-9.
doi: 10.1007/s11010-019-03667-9 URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||