[1] |
Zhao L, Fan K, Sun X, et al. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol, 2023, 14: 1305325. doi:10.3389/fimmu.2023.1305325.
|
[2] |
Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens, 2022, 11(11):1291. doi:10.3390/pathogens11111291.
|
[3] |
Kilinç G, Saris A, Ottenhoff THM, et al. Host-directed therapy to combat mycobacterial infections. Immunol Rev, 2021, 301(1): 62-83. doi:10.1111/imr.12951.
URL
pmid: 33565103
|
[4] |
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol, 2017, 14(12): 963-975. doi:10.1038/cmi.2017.88.
|
[5] |
Wu Y, Chen K, Li L, et al. Plin2-mediated lipid droplet mobilization accelerates exit from pluripotency by lipidomic remodeling and histone acetylation. Cell Death Differ, 2022, 29(11): 2316-2331. doi:10.1038/s41418-022-01018-8.
URL
pmid: 35614132
|
[6] |
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab, 2022, 33(3): 218-229. doi:10.1016/j.tem.2021.12.006.
|
[7] |
Apte MS, Joshi AS. Membrane shaping proteins, lipids, and cytoskeleton: Recipe for nascent lipid droplet formation. Bioessays, 2022, 44(9): e2200038. doi:10.1002/bies.202200038.
|
[8] |
Laval T, Chaumont L, Demangel C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev, 2021, 301(1): 84-97. doi:10.1111/imr.12952.
|
[9] |
Herker E, Vieyres G, Beller M, et al. Lipid Droplet Contact Sites in Health and Disease. Trends Cell Biol, 2021, 31(5):345-358. doi:10.1016/j.tcb.2021.01.004.
|
[10] |
Bosch M, Sánchez-Álvarez M, Fajardo A, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370(6514): eaay8085. doi:10.1126/science.aay8085.
|
[11] |
Agarwal P, Combes TW, Shojaee-Moradie F, et al. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol, 2020, 11:1394. doi:10.3389/fmicb.2020.01394.
URL
pmid: 32754123
|
[12] |
Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol, 2019, 20(3):137-155. doi:10.1038/s41580-018-0085-z.
|
[13] |
Jarc E, Petan T. Lipid Droplets and the Management of Cellular Stress. Yale J Biol Med, 2019, 92(3):435-452.
pmid: 31543707
|
[14] |
Howard NC, Khader SA. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol, 2020, 28(10): 832-850. doi:10.1016/j.tim.2020.04.010.
|
[15] |
Sheedy FJ, Divangahi M. Targeting immunometabolism in host defence against Mycobacterium tuberculosis. Immunology, 2021, 162(2):145-159. doi:10.1111/imm.13276.
|
[16] |
Escoll P, Buchrieser C. Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria?. Curr Opin Immunol, 2019, 60: 117-123. doi:10.1016/j.coi.2019.05.009.
URL
pmid: 31247377
|
[17] |
Kewcharoenwong C, Saenwongsa W, Willcocks SJ, et al. Glibenclamide alters interleukin-8 and interleukin-1β of primary human monocytes from diabetes patients against Mycobacterium tuberculosis infection. Tuberculosis (Edinb), 2020, 123:101939. doi:10.1016/j.tube.2020.101939.
|
[18] |
Knight M, Braverman J, Asfaha K, et al. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog, 2018, 14(1): e1006874. doi:10.1371/journal.ppat.1006874.
|
[19] |
Arnett E, Weaver AM, Woodyard KC, et al. PPARγ is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis. PLoS Pathog, 2018, 14(6): e1007100. doi:10.1371/journal.ppat.1007100.
|