Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (12): 1535-1540.doi: 10.19982/j.issn.1000-6621.20240264
• Review Articles • Previous Articles Next Articles
Du Shanshan, Sha Wei, Wang Li()
Received:
2024-06-26
Online:
2024-12-10
Published:
2024-12-03
Contact:
Wang Li, Email: wangli_shph@tongji.edu.cn
Supported by:
CLC Number:
Du Shanshan, Sha Wei, Wang Li. Research progress on co-infection of non-tuberculous mycobacteria and other respiratory pathogens[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1535-1540. doi: 10.19982/j.issn.1000-6621.20240264
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240264
[1] |
Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014, 18(11):1370-1377. doi:10.5588/ijtld.14.0120.
pmid: 25299873 |
[2] | 罗雪娇, 沙巍. 《非结核分枝杆菌病诊断》解读. 结核与肺部疾病杂志, 2021, 2(2): 116-119. doi:10.3969/j.issn.2096-8493.2021.02.005. |
[3] |
Zweijpfenning SMH, Ingen JV, Hoefsloot W. Geographic Distribution of Nontuberculous Mycobacteria Isolated from Clinical Specimens: A Systematic Review. Semin Respir Crit Care Med, 2018, 39(3): 336-342. doi:10.1055/s-0038-1660864.
pmid: 30071548 |
[4] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11): 918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[5] | Fujita K, Ito Y, Hirai T, et al. Prevalence and risk factors for chronic co-infection in pulmonary Mycobacterium avium complex disease. BMJ Open Respir Res, 2014, 1(1): e000050. doi:10.1136/bmjresp-2014-000050. |
[6] | Urabe N, Sakamoto S, Sano G, et al. Characteristics of patients with bronchoscopy-diagnosed pulmonary Mycobacterium avium complex infection. J Infect Chemother, 2018, 24(10): 822-827. doi:10.1016/j.jiac.2018.06.014. |
[7] | Wang G, Stapleton JT, Baker AW, et al. Clinical Features and Treatment Outcomes of Pulmonary Mycobacterium avium-intracellulare Complex With and Without Coinfections. Open Forum Infect Dis, 2022, 9(8): ofac375. doi:10.1093/ofid/ofac375. |
[8] | Ito M, Furuuchi K, Fujiwara K, et al. Multiple bacterial culture positivity reflects the severity and prognosis as bronchiectasis in Mycobacterium avium complex pulmonary disease. Respir Med, 2023, 219: 107417. doi:10.1016/j.rmed.2023.107417. |
[9] |
Takeda K, Imamura Y, Takazono T, et al. The risk factors for developing of chronic pulmonary aspergillosis in nontuberculous mycobacteria patients and clinical characteristics and outcomes in chronic pulmonary aspergillosis patients coinfected with nontuberculous mycobacteria. Med Mycol, 2016, 54(2): 120-127. doi:10.1093/mmy/myv093.
pmid: 26531100 |
[10] | Kamata H, Asakura T, Suzuki S, et al. Impact of chronic Pseudomonas aeruginosa infection on health-related quality of life in Mycobacterium avium complex lung disease. BMC Pulm Med, 2017, 17(1): 198. doi:10.1186/s12890-017-0544-x. |
[11] |
Wickremasinghe M, Ozerovitch LJ, Davies G, et al. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax, 2005, 60(12):1045-1051. doi:10.1136/thx.2005.046631.
pmid: 16227333 |
[12] |
Orme IM, Ordway DJ. Host response to nontuberculous mycobacterial infections of current clinical importance. Infect Immun, 2014, 82(9): 3516-3522. doi:10.1128/IAI.01606-13.
pmid: 24914222 |
[13] | Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med, 2015, 36(1): 1-11. doi:10.1016/j.ccm.2014.10.001. |
[14] | Fowler CJ, Olivier KN, Leung JM, et al. Abnormal nasal nitric oxide production, ciliary beat frequency, and Toll-like receptor response in pulmonary nontuberculous mycobacterial disease epithelium. Am J Respir Crit Care Med, 2013, 187(12):1374-1381. doi:10.1164/rccm.201212-2197OC. |
[15] |
Zoumot Z, Boutou AK, Gill SS, et al. Mycobacterium avium complex infection in non-cystic fibrosis bronchiectasis. Respirology, 2014, 19(5):714-722. doi:10.1111/resp.12287.
pmid: 24690015 |
[16] | Ishikawa S, Yano S, Kadowaki T, et al. Clinical analysis of non-tuberculous mycobacteriosis cases complicated with pulmonary aspergillosis. Kekkaku, 2011, 86(9):781-785. |
[17] |
Kunst H, Wickremasinghe M, Wells A, et al. Nontuberculous mycobacterial disease and Aspergillus-related lung disease in bronchiectasis. Eur Respir J, 2006, 28(2): 352-357. doi:10.1183/09031936.06.00139005.
pmid: 16611651 |
[18] | Fayos M, Silva JT, López-Medrano F, et al. Non-Tuberculous Mycobacteria and Aspergillus Lung Co-Infection: Systematic Review. J Clin Med, 2022, 11(19): 5619. doi:10.3390/jcm11195619. |
[19] |
Furuuchi K, Ito A, Hashimoto T, et al. Risk stratification for the development of chronic pulmonary aspergillosis in patients with Mycobacterium avium complex lung disease. J Infect Chemother, 2018, 24(8): 654-659. doi:10.1016/j.jiac.2018.04.002.
pmid: 29705392 |
[20] | Jhun BW, Jung WJ, Hwang NY, et al. Risk factors for the development of chronic pulmonary aspergillosis in patients with nontuberculous mycobacterial lung disease. PLoS One, 2017, 12(11): e0188716. doi:10.1371/journal.pone.0188716. |
[21] | Urabe N, Sakamoto S, Shimanuki Y, et al. Impact of chronic co-infection in pulmonary Mycobacterium avium complex disease after treatment initiation. BMC Pulm Med, 2022, 22(1): 157. doi:10.1186/s12890-022-01947-7. |
[22] | Hsieh MH, Lin CY, Wang CY, et al. Impact of concomitant nontuberculous mycobacteria and Pseudomonas aeruginosa isolates in non-cystic fibrosis bronchiectasis. Infect Drug Resist, 2018, 11:1137-1143. doi:10.2147/IDR.S169789. |
[23] |
Böllert FG, Sime PJ, MacNee W, et al. Pulmonary Mycobacterium malmoense and aspergillus infection: a fatal combination?. Thorax, 1994, 49(5):521-522. doi:10.1136/thx.49.5.521.
pmid: 8016779 |
[24] | Geurts K, Zweijpfenning SMH, Pennings LJ, et al. Nontuberculous mycobacterial pulmonary disease and Aspergillus co-infection: Bonnie and Clyde?. Eur Respir J, 2019, 54(1): 1900117. doi:10.1183/13993003.00117-2019. |
[25] | Zhu YN, Xie JQ, He XW, et al. Prevalence and Clinical Characteristics of Nontuberculous Mycobacteria in Patients with Bronchiectasis: A Systematic Review and Meta-Analysis. Respiration, 2021, 100(12): 1218-1229. doi:10.1159/000518328. |
[26] | Carazo-Fernández L, González-Cortés C, López-Medrano R, et al. Mycobacterium avium complex infected cells promote growth of the pathogen Pseudomonas aeruginosa. Microb Pathog, 2022, 166: 105549. doi:10.1016/j.micpath.2022.105549. |
[27] | Birmes FS, Wolf T, Kohl TA, et al. Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals. Front Microbiol, 2017, 8: 339. doi:10.3389/fmicb.2017.00339. |
[28] | Déziel E, Gopalan S, Tampakaki AP, et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol, 2005, 55(4): 998-1014. doi:10.1111/j.1365-2958.2004.04448.x. |
[29] | Heeb S, Fletcher MP, Chhabra SR, et al. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev, 2011, 35(2): 247-274. doi:10.1111/j.1574-6976.2010.00247.x. |
[30] |
Smalley NE, An D, Parsek MR, et al. Quorum Sensing Protects Pseudomonas aeruginosa against Cheating by Other Species in a Laboratory Coculture Model. J Bacteriol, 2015, 197(19): 3154-3159. doi:10.1128/JB.00482-15.
pmid: 26195596 |
[31] | Costello A, Reen FJ, O’Gara F, et al. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. Microbiology (Reading), 2014, 160(Pt 7):1474-1487. doi:10.1099/mic.0.074203-0. |
[32] |
Lee Y, Kim YJ, Lee JH, et al. TatC-dependent translocation of pyoverdine is responsible for the microbial growth suppression. J Microbiol, 2016, 54(2): 122-130. doi:10.1007/s12275-016-5542-9.
pmid: 26832668 |
[33] | Bryant JM, Brown KP, Burbaud S, et al. Stepwise pathogenic evolution of Mycobacterium abscessus. Science, 2021, 372(6541): eabb8699. doi:10.1126/science.abb8699. |
[34] |
Rodríguez-Sevilla G, García-Coca M, Romera-García D, et al. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol, 2018, 308(3): 413-423. doi:10.1016/j.ijmm.2018.03.003.
pmid: 29555180 |
[35] | Idosa AW, Wozniak DJ, Hall-Stoodley L. Surface Dependent Inhibition of Mycobacterium abscessus by Diverse Pseudomonas aeruginosa Strains. Microbiol Spectr, 2022, 10(6): e0247122. doi:10.1128/spectrum.02471-22. |
[36] | Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J, 2020, 56(1): 2000535. doi:10.1183/13993003.00535-2020. |
[37] |
Zhang J, Leifer F, Rose S, et al. Amikacin Liposome Inhalation Suspension (ALIS) Penetrates Non-tuberculous Mycobacterial Biofilms and Enhances Amikacin Uptake Into Macrophages. Front Microbiol, 2018, 9: 915. doi:10.3389/fmicb.2018.00915.
pmid: 29867826 |
[38] | Olivier KN, Griffith DE, Eagle G, et al. Randomized Trial of Liposomal Amikacin for Inhalation in Nontuberculous Mycobacterial Lung Disease. Am J Respir Crit Care Med, 2017, 195(6): 814-823. doi:10.1164/rccm.201604-0700OC. |
[39] | Griffith DE, Eagle G, Thomson R, et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am J Respir Crit Care Med, 2018, 198(12): 1559-1569. doi:10.1164/rccm.201807-1318OC. |
[40] | 中国医药教育协会感染疾病专业委员会. 抗菌药物药代动力学/药效学理论临床应用专家共识. 中华结核和呼吸杂志, 2018, 41(6): 409-446. doi:10.3760/cma.j.issn.1001-0939.2018.06.004. |
[41] | He S, Guo Q, Zhao L, et al. Sitafloxacin Expresses Potent Anti-Mycobacterium abscessus Activity. Front Microbiol, 2022, 12: 779531. doi:10.3389/fmicb.2021.779531. |
[42] | 中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版). 中华结核和呼吸杂志, 2022, 45(8): 739-752. doi:10.3760/cma.j.cn112147-20220407-00290. |
[43] | Takano K, Shimada D, Kashiwagura S, et al. Severe Pulmonary Mycobacterium abscessus Cases Due to Co-Infection with Other Microorganisms Well Treated by Clarithromycin and Sitafloxacin in Japan. Int Med Case Rep J, 2021, 14: 465-470. doi:10.2147/IMCRJ.S321969. |
[44] | Sano C, Tatano Y, Shimizu T, et al. Comparative in vitro and in vivo antimicrobial activities of sitafloxacin, gatifloxacin and moxifloxacin against Mycobacterium avium. Int J Antimicrob Agents, 2011, 37(4): 296-301. doi:10.1016/j.ijantimicag.2010.12.014. |
[45] | Drayton J, Dickinson G, Rinaldi MG. Coadministration of rifampin and itraconazole leads to undetectable levels of serum itraconazole. Clin Infect Dis, 1994, 18(2): 266. doi:10.1093/clinids/18.2.266. |
[46] |
Moon SM, Park HY, Jeong BH, et al. Effect of rifampin and rifabutin on serum itraconazole levels in patients with chronic pulmonary aspergillosis and coexisting nontuberculous mycobacterial infection. Antimicrob Agents Chemother, 2015, 59(1): 663-665. doi:10.1128/AAC.04075-14.
pmid: 25313207 |
[1] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[2] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[3] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[4] | Shu Wei, Liu Yuhong. Committed to innovation and striving for long-term progress: interpretation of research and innovation chapter in the Global Tuberculosis Report 2024 [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 137-141. |
[5] | Xu Liangrun, Yang Mingying, Guo Yingwu, Wang Yun, Xu Jingjing, Hou Juyan, Ma Yunhong. Effect of family collaborative care model in self-management of new smear-positive tuberculosis patients under the health belief model collaborative [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 210-217. |
[6] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[7] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[8] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[9] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[10] | Liang Yuexin, Liu Aimei, Zeng Huipin, Huang Lihua, Lyu Liuying, Zeng Xinyan, Li Liyuan, Huang Junli. Strategy-analysis of drug-resistant tuberculosis screening based on all suspected tuberculosis patients of Liuzhou City, Guangxi, 2019—2020 [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 958-966. |
[11] | Tan Shouyong. Research progress on comprehensive treatment beyond antibiotic therapy for nontuberculous mycobacterium pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 967-970. |
[12] | Shu Wei, Liu Yuhong. Dedicating to innovation, practicing to achieve targets: interpretation of research & innovation part of the WHO Global Tuberculosis Report 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 613-617. |
[13] | Xu Yu, He Yukun, Zhou Dexun, Zhang Pingji. Analysis of the distribution characteristics of microbial communities in the lower respiratory tract of pulmonary tuberculosis patients based on metagenomic sequencing [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 634-640. |
[14] | Xia Lan, Xiao Yue, Chen Chuang, Xia Yong, Zhu Sui, Zhang Linglin. Analysis of latent tuberculosis infection and active pulmonary tuberculosis diprevalence among newly admitted students of Sichuan Province for the year 2022 [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 664-671. |
[15] | Shang Xuetian, Dong Jing, Huang Mailing, Sun Qi, Jia Hongyan, Zhang Lanyue, Liu Qiuyue, Yao Mingxu, Wang Yingchao, Ji Xiuxiu, Du Boping, Xing Aiying, Pan Liping. Transcriptome study on peripheral blood mononuclear cells of latent tuberculosis infection individuals [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 449-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||