[1] |
Peto HM, Pratt RH, Harrington TA, et al. Epidemiology of extrapulmonary tuberculosis in the United States, 1993—2006. Clin Infect Dis, 2009, 49(9): 1350-1357. doi:10.1086/605559.
|
[2] |
Russell DG. Who puts the tubercle in tuberculosis?. Nat Rev Microbiol, 2007, 5(1): 39-47. doi:10.1038/nrmicro1538.
pmid: 17160001
|
[3] |
Flynn JL, Gideon HP, Mattila JT, et al. Immunology studies in non-human primate models of tuberculosis. Immunol Rev, 2015, 264(1):60-73. doi:10.1111/imr.12258.
pmid: 25703552
|
[4] |
Cohen SB, Gern BH, Delahaye JL, et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe, 2018, 24(3): 439-446.e4. doi:10.1016/j.chom.2018.08.001.
pmid: 30146391
|
[5] |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis, 2020, 11(2): 88. doi:10.1038/s41419-020-2298-2.
|
[6] |
叶江娥, 方雪晖, 熊延军, 等. 基于转录组学和机器学习算法的肺结核铁死亡相关关键基因的研究. 中国防痨杂志, 2024, 46(1): 92-99. doi:10.19982/j.issn.1000-6621.20230273.
|
[7] |
Ma C, Wu X, Zhang X, et al. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol, 2022, 12: 1004148. doi:10.3389/fcimb.2022.1004148.
|
[8] |
Huang L, Nazarova EV, Russell DG. Mycobacterium tuberculosis: Bacterial Fitness within the Host Macrophage. Microbiol Spectr, 2019, 7(2): 10.1128/microbiolspec.BAI-0001-2019. doi:10.1128/microbiolspec.BAI-0001-2019.
|
[9] |
Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015, 264(1): 220-232. doi:10.1111/imr.12268.
|
[10] |
Rochette L, Dogon G, Rigal E, et al. Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int J Mol Sci, 2022, 24(1): 449. doi:10.3390/ijms24010449.
|
[11] |
Qi X, Yang Q, Cai J, et al. Transcriptional profiling of human peripheral blood mononuclear cells in household contacts of pulmonary tuberculosis patients provides insights into mechanisms of Mycobacterium tuberculosis control and elimination. Emerg Microbes Infect, 2024, 13(1):2295387. doi:10.1080/22221751.2023.2295387.
|
[12] |
Shi X, Li C, Cheng L, et al. Mycobacterium tuberculosis Rv1324 Protein Contributes to Mycobacterial Persistence and Causes Pathological Lung Injury in Mice by Inducing Ferroptosis. Microbiol Spectr, 2023, 11(1): e0252622. doi:10.1128/spectrum.02526-22.
|
[13] |
Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med, 2019, 216(3): 556-570. doi:10.1084/jem.20181776.
|
[14] |
Lin H, Guo X, Liu J, et al. Ethanol-Induced Hepatic Ferroptosis Is Mediated by PERK-Dependent MAMs Formation: Preventive Role of Quercetin. Mol Nutr Food Res, 2024, 68(7): e2300343. doi:10.1002/mnfr.202300343.
|
[15] |
马伯利, 聂雪伊, 刘悦阳, 等. PERK/ATF4/CHOP通路对BCG诱导THP-1细胞NLRP3炎性小体活化的调控作用. 畜牧兽医学报, 2022, 53(7): 2268-2281. doi:10.11843/j.issn.0366-6964.2022.07.023.
|
[16] |
Yi S, Chen K, Zhang L, et al. Endoplasmic Reticulum Stress Is Involved in Stress-Induced Hypothalamic Neuronal Injury in Rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK Pathways. Front Cell Neurosci, 2019, 13: 190. doi:10.3389/fncel.2019.00190.
pmid: 31130849
|
[17] |
Bagayoko S, Meunier E. Emerging roles of ferroptosis in infectious diseases. FEBS J, 2022, 289(24): 7869-7890. doi:10.1111/febs.16244.
|