Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (5): 500-504.doi: 10.19982/j.issn.1000-6621.20210582
• Review Articles • Previous Articles Next Articles
FEI Wan-wan, LU Zhen-hui, HUANG Xing, LI Cui, ZHANG Hui-yong, JIANG Yu-wei()
Received:
2021-09-28
Online:
2022-05-10
Published:
2022-05-04
Contact:
JIANG Yu-wei
E-mail:jiangyuwei2020@163.com
Supported by:
CLC Number:
FEI Wan-wan, LU Zhen-hui, HUANG Xing, LI Cui, ZHANG Hui-yong, JIANG Yu-wei. Research progress on the correlation of gut microbiota with and pulmonary tuberculosis based on the theory of exterior and interior of lung and large intestine[J]. Chinese Journal of Antituberculosis, 2022, 44(5): 500-504. doi: 10.19982/j.issn.1000-6621.20210582
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210582
[1] |
周玲玲. 300例肺结核病患者抗结核药物不良反应的调查分析. 当代医学, 2021, 27(15):159-160. doi: 10.3969/j.issn.1009-4393.2021.15.063.
doi: 10.3969/j.issn.1009-4393.2021.15.063 |
[2] |
杨元利, 张永峰, 窦权利 . 老年肺结核病130例临床分析. 陕西医学杂志, 2019, 48(12): 1691-1693. doi: 10.3969/j.issn.1000-7377.2019.12.032.
doi: 10.3969/j.issn.1000-7377.2019.12.032 |
[3] |
Luo M, Liu Y, Wu P, et al. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Front Physiol, 2017, 8: 822. doi: 10.3389/fphys.2017.00822.
doi: 10.3389/fphys.2017.00822 URL |
[4] |
Wipperman MF, Fitzgerald DW, Juste MAJ, et al. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep, 2017, 7(1): 10767. doi: 10.1038/s41598-017-10346-6.
doi: 10.1038/s41598-017-10346-6 pmid: 28883399 |
[5] |
Namasivayam S, Maiga M, Yuan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5(1): 71. doi: 10.1186/s40168-017-0286-2.
doi: 10.1186/s40168-017-0286-2 URL |
[6] |
Hu Y, Feng Y, Wu J, et al. The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients. Front Cell Infect Microbiol, 2019, 9: 90. doi: 10.3389/fcimb.2019.00090.
doi: 10.3389/fcimb.2019.00090 URL |
[7] |
Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect, 2019, 78(4): 317-322. doi: 10.1016/j.jinf.2018.08.006.
doi: 10.1016/j.jinf.2018.08.006 URL |
[8] |
Maji A, Misra R, Dhakan DB, et al. Gut microbiome contribu-tes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol, 2018, 20(1): 402-419. doi: 10.1111/1462-2920.14015.
doi: 10.1111/1462-2920.14015 URL |
[9] |
Khan N, Vidyarthi A, Nadeem S, et al. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol, 2016, 7: 529. doi: 10.3389/fimmu.2016.00529.
doi: 10.3389/fimmu.2016.00529 |
[10] |
Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol, 2004, 12(12): 562-568. doi: 10.1016/j.tim.2004.10.008.
doi: 10.1016/j.tim.2004.10.008 pmid: 15539116 |
[11] |
Arnold IC, Hutchings C, Kondova I, et al. Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M.tuberculosis. Vaccine, 2015, 33(15): 1808-1814. doi: 10.1016/j.vaccine.2015.02.041.
doi: 10.1016/j.vaccine.2015.02.041 URL |
[12] |
Marsland BJ, Trompette A, Gollwitzer ES. The Gut-Lung Axis in Respiratory Disease. Ann Am Thorac Soc, 2015, 12 Suppl 2: S150-S156. doi: 10.1513/AnnalsATS.201503-133AW.
doi: 10.1513/AnnalsATS.201503-133AW |
[13] |
He Y, Wen Q, Yao F, et al. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol, 2017, 43(1): 81-95. doi: 10.1080/1040841X.2016.1176988.
doi: 10.1080/1040841X.2016.1176988 URL |
[14] |
McDermott MR, Clark DA, Bienenstock J. Evidence for a common mucosal immunologic system.Ⅱ. Influence of the estrous cycle on B immunoblast migration into genital and intestinal tissues. J Immunol, 1980, 124(6): 2536-2539.
pmid: 6966293 |
[15] | 杜丽娟, 王玲, 李风森. 从哮喘黏膜免疫中T淋巴细胞表达的研究阐释“肺与大肠相表里”理论. 辽宁中医杂志, 2012, 39(8):1620-1622. |
[16] |
Sugawara I, Udagawa T, Yamada H. Rat neutrophils prevent the development of tuberculosis. Infect Immun, 2004, 72(3): 1804-1806. doi: 10.1128/IAI.72.3.1804-1806.2004.
doi: 10.1128/IAI.72.3.1804-1806.2004 pmid: 14977991 |
[17] |
Martineau AR, Newton SM, Wilkinson KA, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest, 2007, 117(7): 1988-1994. doi: 10.1172/JCI31097.
doi: 10.1172/JCI31097 pmid: 17607367 |
[18] |
Clarke TB, Davis KM, Lysenko ES, et al. Recognition of peptidoglycan from the microbiota by Nod 1 enhances systemic innate immunity. Nat Med, 2010, 16(2): 228-231. doi: 10.1038/nm.2087.
doi: 10.1038/nm.2087 URL |
[19] |
Balfour A, Schutz C, Goliath R, et al. Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Front Immunol, 2021, 12: 648216. doi: 10.3389/fimmu.2021.648216.
doi: 10.3389/fimmu.2021.648216 URL |
[20] |
Zhang N, Luo X, Huang J, et al. The landscape of different molecular modules in an immune microenvironment during tuberculosis infection. Brief Bioinform, 2021, 22(5): bbab071. doi: 10.1093/bib/bbab071.
doi: 10.1093/bib/bbab071 URL |
[21] |
Le Bourhis L, Martin E, Péguillet I, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol, 2010, 11(8): 701-708. doi: 10.1038/ni.1890.
doi: 10.1038/ni.1890 pmid: 20581831 |
[22] |
Dumas A, Corral D, Colom A, et al. The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis. Front Immunol, 2018, 9: 2656. doi: 10.3389/fimmu.2018.02656.
doi: 10.3389/fimmu.2018.02656 URL |
[23] |
Flynn JL, Chan J, Lin PL. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol, 2011, 4(3): 271-278. doi: 10.1038/mi.2011.14.
doi: 10.1038/mi.2011.14 pmid: 21430653 |
[24] |
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392(6673): 245-252. doi: 10.1038/32588.
doi: 10.1038/32588 URL |
[25] |
Negi S, Pahari S, Bashir H, et al. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Front Immunol, 2019, 10: 1142. doi: 10.3389/fimmu.2019.01142.
doi: 10.3389/fimmu.2019.01142 URL |
[26] |
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
pmid: 7636184 |
[27] |
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol, 2012, 30: 531-564. doi: 10.1146/annurev.immunol.25.022106.141623.
doi: 10.1146/annurev.immunol.25.022106.141623 pmid: 22224781 |
[28] |
Guyot-Revol V, Innes J A, Hackforth S, et al. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med, 2006, 173(7):803-810. doi: 10.1164/rccm.200508-1294OC.
doi: 10.1164/rccm.200508-1294OC URL |
[29] |
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014, 20(2): 159-166. doi: 10.1038/nm.3444.
doi: 10.1038/nm.3444 pmid: 24390308 |
[30] |
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480): 451-455. doi: 10.1038/nature12726.
doi: 10.1038/nature12726 URL |
[31] |
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A, 2010, 107(27): 12204-12209. doi: 10.1073/pnas.0909122107.
doi: 10.1073/pnas.0909122107 pmid: 20566854 |
[32] |
Negatu DA, Liu JJJ, Zimmerman M, et al. Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrob Agents Chemother, 2018, 62(3): e01571-17. doi: 10.1128/AAC.01571-17.
doi: 10.1128/AAC.01571-17 |
[33] |
Morollo AA, Eck MJ. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat Struct Biol, 2001, 8(3): 243-247. doi: 10.1038/84988.
doi: 10.1038/84988 pmid: 11224570 |
[34] |
Bashiri G, Johnston JM, Evans GL, et al. Structure and inhibition of subunit Ⅰ of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 11): 2297-2308. doi: 10.1107/S1399004715017216.
doi: 10.1107/S1399004715017216 URL |
[35] |
Negatu DA, Yamada Y, Xi Y, et al. Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in Mycobacterium tuberculosis. mBio, 2019, 10(2): e02781-18. doi: 10.1128/mBio.02781-18.
doi: 10.1128/mBio.02781-18 |
[36] |
Sze MA, Tsuruta M, Yang SW, et al. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One, 2014, 9(10): e111228. doi: 10.1371/journal.pone.0111228.
doi: 10.1371/journal.pone.0111228 URL |
[37] |
Wang J, Tian Z. How lung infection leads to gut injury. Oncotarget, 2015, 6(40): 42394-42395. doi: 10.18632/oncotarget.6470.
doi: 10.18632/oncotarget.6470 URL |
[38] |
白宇, 原林, 黄泳, 等. 经络的解剖学发现--筋膜学新理论. 世界科学技术--中医药现代化, 2010, 12(1): 20-24. doi: 10.3969/j.issn.1674-3849.2010.01.005.
doi: 10.3969/j.issn.1674-3849.2010.01.005 |
[39] |
王春雷, 原林, 王军 , 等. 人体筋膜重建经线与经典经线走行路线对比. 解剖学杂志, 2007, 30(3): 340-343. doi: 10.3969/j.issn.1001-1633.2007.03.022.
doi: 10.3969/j.issn.1001-1633.2007.03.022 |
[40] |
原林, 焦培峰, 唐雷 , 等. 中医经络理论的物质基础--结缔组织、筋膜和自体监控系统(筋膜学). 中国基础科学, 2005, 7(3): 44-47. doi: 10.3969/j.issn.1009-2412.2005.03.014.
doi: 10.3969/j.issn.1009-2412.2005.03.014 |
[41] | 赵吉平, 刘兵. 肺与大肠表里关系的经、穴互通基础研究. 北京中医药大学学报, 2010, 33(9):592-594. |
[42] | 曾祥国. 从粘液组织化学变化试论肺与大肠的阴阳表里关系. 四川医学, 1982, 3(3):129-132. |
[43] |
牛春雨, 李继承, 赵自刚 , 等. 肠系膜淋巴管结扎对大鼠急性肺损伤的影响. 中国病理生理杂志, 2006, 22(8):1566-1570. doi: 10.3321/j.issn:1000-4718.2006.08.025.
doi: 10.3321/j.issn:1000-4718.2006.08.025 |
[44] |
Tulic MK, Piche T, Verhasselt V. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy, 2016, 46(4): 519-528. doi: 10.1111/cea.12723.
doi: 10.1111/cea.12723 pmid: 26892389 |
[45] |
Ahmadi Badi S, Khatami SH, Irani SH, et al. Induction Effects of Bacteroides fragilis Derived Outer Membrane Vesicles on Toll Like Receptor 2, Toll Like Receptor 4 Genes Expression and Cytokines Concentration in Human Intestinal Epithelial Cells. Cell J, 2019, 21(1): 57-61. doi: 10.22074/cellj.2019.5750.
doi: 10.22074/cellj.2019.5750 pmid: 30507089 |
[46] |
Schretter CE, Vielmetter J, Bartos I, et al. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 2018, 563(7731): 402-406. doi: 10.1038/s41586-018-0634-9.
doi: 10.1038/s41586-018-0634-9 URL |
[47] |
Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol, 2019, 12(3): 772-783. doi: 10.1038/s41385-019-0147-3.
doi: 10.1038/s41385-019-0147-3 URL |
[48] |
Huang Y, Yang Z, McGowan J, et al. Regulation of IgE Responses by γδ T Cells. Curr Allergy Asthma Rep, 2015, 15(4): 13. doi: 10.1007/s11882-015-0519-z.
doi: 10.1007/s11882-015-0519-z URL |
[49] |
Glanville N, Message SD, Walton RP, et al. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol, 2013, 6(6): 1091-1100. doi: 10.1038/mi.2013.3.
doi: 10.1038/mi.2013.3 pmid: 23385428 |
[50] | 王蓓, 张文, 方邦江. 肠道菌群调控黏膜免疫与脓毒症的发病机制. 生命的化学, 2019, 39(6): 1153-1158. |
[51] |
Barreto ML, Pereira SM, Ferreira AA. BCG vaccine: efficacy and indications for vaccination and revaccination. J Pediatr (Rio J), 2006, 82(3 Suppl): S45-S54. doi: 10.2223/JPED.1499.
doi: 10.2223/JPED.1499 |
[52] |
Gopal R, Rangel-Moreno J, Slight S, et al. Interleukin-17-dependent CXCL 13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol, 2013, 6(5): 972-984. doi: 10.1038/mi.2012.135.
doi: 10.1038/mi.2012.135 pmid: 23299616 |
[1] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[2] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[3] | Li Min, Yao Yushan, Qiao Haixia, Lei Hong. Association between pulmonary tuberculosis and the gut microbiota: treatment strategies [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 520-526. |
[4] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[5] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[6] | Fan Jun, Wang Heng, Lan Tinglong, Dong Weijie, Tang Kai, Li Yuan, Yan Guangxuan, Xu Shangsheng, Kang Zhigang, Qin Shibing. Clinical characteristics and surgical outcomes of 12 cases of non-tuberculous mycobacterial spondylitis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 87-95. |
[7] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[8] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[9] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[12] | Yang Liangzi, Zhang Peize, Lu Shuihua. Interpretation of World Health Organization’s Co-administration of Treatment for Drug-resistant Tuberculosis and Hepatitis C: 2024 Update [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 874-876. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | Zhang Hui, Ge Li, Zhang Yuhan, Feng Ruie. Clinicopathologic characteristics of 34 cases non-tuberculous mycobacterial disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 756-762. |
[15] | Zhang Hongtai, Ren Yixuan, Hu peilei, Wang Nenhan, Li Jie, Tian Lili, Zhao Yanfeng, Chen Shuangshuang, Li Chuanyou. Comparison of microbiota diversity in the sputum of pulmonary tuberculosis patients with rifampicin resistance or sensitivity [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 625-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||