Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (12): 1358-1362.doi: 10.19982/j.issn.1000-6621.20220282
• Review Articles • Previous Articles Next Articles
Zhu Yinyin1,2, Zhang Hongying1,2()
Received:
2022-07-27
Online:
2022-12-10
Published:
2022-12-02
Contact:
Zhang Hongying
E-mail:xiao99now@aliyun.com
Supported by:
CLC Number:
Zhu Yinyin, Zhang Hongying. Research progress of non-coding RNA tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(12): 1358-1362. doi: 10.19982/j.issn.1000-6621.20220282
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220282
[1] |
Stanley SA, Cox JS. Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr Top Microbiol Immunol, 2013, 374:211-241. doi:10.1007/82_2013_332.
doi: 10.1007/82_2013_332 pmid: 23881288 |
[2] |
Kundu M, Basu J. The Role of microRNA and Long Non-Coding RNA in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Front Immunol, 2021, 12:687962. doi:10.3389/fimmu.2021.687962.
doi: 10.3389/fimmu.2021.687962 |
[3] |
Guttman M, Russell P, Ingolia NT, et al. Ribosome profiling provides evidence that large noncoding RNA do not encode proteins. Cell, 2013, 154(1):240-251. doi:10.1016/j.cell.2013.06.009.
doi: 10.1016/j.cell.2013.06.009 URL |
[4] |
Costa FF. Non-coding RNA: new players in eukaryotic biology. Gene, 2005, 357(2):83-94. doi:10.1016/j.gene.2005.06.019.
doi: 10.1016/j.gene.2005.06.019 URL |
[5] |
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol, 2021, 220(2):e202009045. doi:10.1083/jcb.202009045.
doi: 10.1083/jcb.202009045 |
[6] |
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNA. RNA Biol, 2013, 10(6):925-933. doi:10.4161/rna.24604.
doi: 10.4161/rna.24604 |
[7] |
Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41):5661-5667. doi:10.1038/onc.2017.184.
doi: 10.1038/onc.2017.184 pmid: 28604750 |
[8] |
Huang Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med, 2018, 22(12):5768-5775. doi:10.1111/jcmm.13866.
doi: 10.1111/jcmm.13866 pmid: 30188595 |
[9] |
Agliano F, Rathinam VA, Medvedev AE, et al. Long Noncoding RNA in Host-Pathogen Interactions. Trends Immunol, 2019, 40(6):492-510. doi:10.1016/j.it.2019.04.001.
doi: 10.1016/j.it.2019.04.001 URL |
[10] |
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci, 2016, 73(13):2491-2509. doi:10.1007/s00018-016-2174-5.
doi: 10.1007/s00018-016-2174-5 pmid: 27007508 |
[11] |
Reeves MB, Davies AA, Mcsharry BP, et al. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science, 2007, 316(5829):1345-1348. doi:10.1126/science.1142984.
doi: 10.1126/science.1142984 pmid: 17540903 |
[12] |
Jiang F, Lou J, Zheng XM, et al. LncRNA MIAT regulates autophagy and apoptosis of macrophage infected by Mycobacterium tuberculosis through the miR-665/ULK1 signaling axis. Mol Immunol, 2021, 139:42-49. doi:10.1016/j.molimm.2021.07.023.
doi: 10.1016/j.molimm.2021.07.023 pmid: 34454184 |
[13] |
Subuddhi A, Kumar M, Majumder D, et al. Unraveling the role of H3K 4 trimethylation and lncRNA HOTAIR in SATB1 and DUSP4-dependent survival of virulent Mycobacterium tuberculosis in macrophages. Tuberculosis (Edinb), 2020, 120:101897. doi:10.1016/j.tube.2019.101897.
doi: 10.1016/j.tube.2019.101897 |
[14] |
Chen ZL, Wei LL, Shi LY, et al. Screening and identification of lncRNA as potential biomarkers for pulmonary tuberculosis. Sci Rep, 2017, 7(1):16751. doi:10.1038/s41598-017-17146-y.
doi: 10.1038/s41598-017-17146-y URL |
[15] |
Bai H, Wu Q, Hu X, et al. Clinical significance of lnc-AC145676.2.1-6 and lnc-TGS1-1 and their variants in western Chinese tuberculosis patients. Int J Infect Dis, 2019, 84:8-14. doi:10.1016/j.ijid.2019.04.018.
doi: S1201-9712(19)30188-2 pmid: 31028876 |
[16] |
Mou X, Wang J, Wang L, et al. Correlation Between Single Nucleotide Polymorphisms of the rs 664589 Locus in the Long-Chain Noncoding RNA Lung Adenocarcinoma Metastasis-Associated Gene 1, Hypertension, and Its Mechanism. Genet Test Mol Biomarkers, 2020, 24(3):120-130. doi:10.1089/gtmb.2019.0193.
doi: 10.1089/gtmb.2019.0193 URL |
[17] |
Zhao Z, Zhang M, Ying J, et al. Significance of genetic polymorphisms in long non-coding RNA AC079767.4 in tuberculosis susceptibility and clinical phenotype in Western Chinese Han population. Sci Rep, 2017, 7(1):965. doi:10.1038/s41598-017-01163-y.
doi: 10.1038/s41598-017-01163-y pmid: 28424495 |
[18] | 田若男. 结核分枝杆菌感染巨噬细胞中长链非编码RNA调控网络的构建与分析. 长春, 吉林大学: 2021. |
[19] |
Li D, Gao C, Zhao L, et al. Inflammatory response is modulated by lincRNACox 2 via the NFkappaB pathway in macrophages infected by Mycobacterium tuberculosis. Mol Med Rep, 2020, 21(6):2513-2521. doi:10.3892/mmr.2020.11053.
doi: 10.3892/mmr.2020.11053 |
[20] |
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483):344-352. doi:10.1038/nature12986.
doi: 10.1038/nature12986 URL |
[21] |
Sun W, Lou H, Cao J, et al. LncRNA MEG3 control Mycobacterium Tuberculosis infection via controlled MiR-145-5p expression and modulation of macrophages proliferation. Microb Pathog, 2020, 149:104550. doi:10.1016/j.micpath.2020.104550.
doi: 10.1016/j.micpath.2020.104550 |
[22] |
Yi Z, Li J, Gao K, et al. Identifcation of differentially expressed long non-coding RNA in CD4+ T cells response to latent tuberculosis infection. J Infect, 2014, 69(6):558-568. doi:10.1016/j.jinf.2014.06.016.
doi: 10.1016/j.jinf.2014.06.016 URL |
[23] |
Fu Y, Xu X, Xue J, et al. Deregulated lncRNA in B Cells from Patients with Active Tuberculosis. PLoS One, 2017, 12(1):e170712. doi:10.1371/journal.pone.0170712.
doi: 10.1371/journal.pone.0170712 |
[24] |
Wang Y, Zhong H, Xie X, et al. Long noncoding RNA derived from CD 244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A, 2015, 112(29):E3883-E3892. doi:10.1073/pnas.1501662112.
doi: 10.1073/pnas.1501662112 |
[25] |
Cai Y, Yu X, Hu S, et al. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics, 2009, 7(4):147-154. doi:10.1016/j.dci.2020.103616.
doi: 10.1016/j.dci.2020.103616 URL |
[26] |
Riahi Rad Z, Riahi Rad Z, Goudarzi H, et al. MicroRNA in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol, 2021, 236(9):6249-6270. doi:10.1002/jcp.30333.
doi: 10.1002/jcp.30333 URL |
[27] |
Chakrabarty S, Kumar A, Raviprasad K, et al. Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis. Tuberculosis (Edinb), 2019, 116:37-43. doi:10.1016/j.tube.2019.04.002.
doi: 10.1016/j.tube.2019.04.002 URL |
[28] |
谌蒙蒙, 董静, 孙琦, 等. 基于基因芯片的miRNA表达差异在结核性脑膜炎与病毒性脑膜炎诊断中的价值. 中国防痨杂志, 2022, 44(3):264-272. doi:10.19982/j.issn.1000-6621.20210699.
doi: 10.19982/j.issn.1000-6621.20210699 |
[29] |
Harapan H, Fitra F, Ichsan I, et al. The roles of microRNA on tuberculosis infection: meaning or myth? Tuberculosis (Edinb), 2013, 93(6):596-605. doi:10.1016/j.tube.2013.08.004.
doi: 10.1016/j.tube.2013.08.004 URL |
[30] |
Fu Y, Yi Z, Li J, et al. Deregulated microRNA in CD4+ T cells from individuals with latent tuberculosis versus active tuberculosis. J Cell Mol Med, 2014, 18(3):503-513. doi:10.1111/jcmm.12205.
doi: 10.1111/jcmm.12205 URL |
[31] |
Kleinsteuber K, Heesch K, Schattling S, et al. Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells and peripheral blood from tuberculosis patients. PLoS One, 2013, 8(4):e61609. doi:10.1371/journal.pone.0061609.
doi: 10.1371/journal.pone.0061609 |
[32] |
van Rensburg IC, du Toit L, Walzl G, et al. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis. Gene, 2018, 655:35-41. doi:10.1016/j.gene.2018.02.052.
doi: S0378-1119(18)30200-2 pmid: 29477867 |
[33] |
Kim JK, Kim TS, Basu J, et al. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cell Microbiol, 2017, 19(1):12687. doi:10.1111/cmi.12687.
doi: 10.1111/cmi.12687 |
[34] |
Liu K, Hong D, Zhang F, et al. MicroRNA-106a Inhibits Autophagy Process and Antimicrobial Responses by Targeting ULK1, ATG7, and ATG16L 1 During Mycobacterial Infection. Front Immunol, 2020, 11:610021. doi:10.1128/mBio.03045-19.
doi: 10.1128/mBio.03045-19 |
[35] |
Chen DY, Chen YM, Lin CF, et al. MicroRNA-889 Inhibits Autophagy To Maintain Mycobacterial Survival in Patients with Latent Tuberculosis Infection by Targeting TWEAK. mBio, 2020, 11(1):e03045-19. doi:10.1128/mBio.03045-19.
doi: 10.1128/mBio.03045-19 |
[36] |
Fu B, Xue W, Zhang H, et al. MicroRNA-325-3p Facilitates Immune Escape of Mycobacterium tuberculosis through Targeting LNX1 via NEK 6 Accumulation to Promote Anti-Apoptotic STAT3 Signaling. mBio, 2020, 11(3):e00557-20. doi:10.1128/mBio.00557-20.
doi: 10.1128/mBio.00557-20 |
[37] |
Liu G, Wan Q, Li J, et al. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle, 2020, 19(22):3182-3194. doi:10.1080/15384101.2020.1838792.
doi: 10.1080/15384101.2020.1838792 URL |
[38] |
Rajaram MV, Ni B, Morris JD, et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A, 2011, 108(42):17408-17413. doi:10.1073/pnas.1112660108.
doi: 10.1073/pnas.1112660108 URL |
[39] |
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 2013, 496(7444):238-242. doi:10.1038/nature11986.
doi: 10.1038/nature11986 URL |
[40] |
Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol, 2014, 15(4):323-332. doi:10.1038/ni.2833.
doi: 10.1038/ni.2833 pmid: 24562310 |
[41] |
Garaude J, Acin-Perez R, Martinez-Cano S, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol, 2016, 17(9):1037-1045. doi:10.1038/ni.3509.
doi: 10.1038/ni.3509 pmid: 27348412 |
[42] |
Hackett EE, Charles-Messance H, O’Leary SM, et al. Mycobacterium tuberculosis Limits Host Glycolysis and IL-1beta by Restriction of PFK-M via MicroRNA-21. Cell Rep, 2020, 30(1):124-136. doi:10.1016/j.celrep.2019.12.015.
doi: S2211-1247(19)31665-1 pmid: 31914380 |
[43] |
Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol, 2016, 17(6):677-686. doi:10.1038/ni.3434.
doi: 10.1038/ni.3434 URL |
[44] |
Kristensen LS, Andersen MS, Stagsted L, et al. The biogenesis, biology and characterization of circular RNA. Nat Rev Genet, 2019, 20(11):675-691. doi:10.1038/s41576-019-0158-7.
doi: 10.1038/s41576-019-0158-7 pmid: 31395983 |
[45] |
Qian Z, Liu H, Li M, et al. Potential Diagnostic Power of Blood Circular RNA Expression in Active Pulmonary Tuberculosis. EBioMedicine, 2018, 27:18-26. doi:10.1016/j.ebiom.2017.12.007.
doi: S2352-3964(17)30488-7 pmid: 29248507 |
[46] |
Li Z, Huang C, Bao C, et al. Exon-intron circular RNA regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3):256-264. doi:10.1038/nsmb.2959.
doi: 10.1038/nsmb.2959 URL |
[47] |
Zhu Y, Huang G, Li S, et al. CircSMARCA5: A key circular RNA in various human diseases. Front Genet, 2022, 13:921306. doi:10.3389/fgene.2022.921306.
doi: 10.3389/fgene.2022.921306 |
[48] |
Ng WL, Marinov GK, Liau ES, et al. Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol, 2016, 13(9):861-871. doi:10.1080/15476286.2016.1207036.
doi: 10.1080/15476286.2016.1207036 pmid: 27362560 |
[49] |
Wu M, Liu Z, Zhang S. Down-regulation of hsa_circ_0045474 induces macrophage autophagy in tuberculosis via miR-582-5p/TNKS2 axis. Innate Immun, 2022, 28(1):11-18. doi:10.1177/17534259211064285.
doi: 10.1177/17534259211064285 URL |
[50] |
Huang Z, Yao F, Liu J, et al. Up-regulation of circRNA-0003528 promotes Mycobacterium tuberculosis associated macrophage polarization via down-regulating miR-224-5p, miR-324-5p and miR-488-5p and up-regulating CTLA4. Aging (Albany NY), 2020, 12(24):25658-25672. doi:10.18632/aging.104175.
doi: 10.18632/aging.104175 |
[51] |
Liu H, Lu G, Wang W, et al. A Panel of CircRNA in the Serum Serves as Biomarkers for Mycobacterium tuberculosis Infection. Front Microbiol, 2020, 11:1215. doi:10.3389/fmicb.2020.01215.
doi: 10.3389/fmicb.2020.01215 URL |
[52] |
Yi Z, Gao K, Li R, et al. Dysregulated circRNA in plasma from active tuberculosis patients. J Cell Mol Med, 2018, 22(9):4076-4084. doi:10.1111/jcmm.13684.
doi: 10.1111/jcmm.13684 URL |
[53] |
Wang H, Zhang Y, Wu Q, et al. miR-16 mimics inhibit TGF-beta1-induced epithelial-to-mesenchymal transition via activation of autophagy in non-small cell lung carcinoma cells. Oncol Rep, 2018, 39(1):247-254. doi:10.3892/or.2017.6088.
doi: 10.3892/or.2017.6088 pmid: 29138833 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[5] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[9] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[13] | Sun Danyuchen, Liu Yuhong. Research progress on active case finding of tuberculosis in the elderly population: a literature review [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 96-101. |
[14] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[15] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||