Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (12): 1363-1368.doi: 10.19982/j.issn.1000-6621.20220312
• Review Articles • Previous Articles Next Articles
Sheng Gang, Chu Hongqian, Liu Dingyi, Sun Zhaogang()
Received:
2022-08-12
Online:
2022-12-10
Published:
2022-12-02
Contact:
Sun Zhaogang
E-mail:sunzg75@163.com
Supported by:
CLC Number:
Sheng Gang, Chu Hongqian, Liu Dingyi, Sun Zhaogang. Progress in the identification of Mycobacterium tuberculosis antigenic proteins in clinical specimens[J]. Chinese Journal of Antituberculosis, 2022, 44(12): 1363-1368. doi: 10.19982/j.issn.1000-6621.20220312
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220312
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] | World Health Organization. Global tuberculosis control 2010. Geneva:World Health Organization, 2010. |
[3] |
Murray CJ. World tuberculosis burden. Lancet, 1990, 335(8696): 1043-1044. doi:10.1016/0140-6736(90)91114-p.
doi: 10.1016/0140-6736(90)91114-p pmid: 1970100 |
[4] |
戴振华, 郭兰芹, 张贺秋, 等. 结核分枝杆菌抗原检测研究进展. 生物技术通讯, 2013, 24(5):732-735. doi:10.3969/j.issn.1009-0002.2013.05.031.
doi: 10.3969/j.issn.1009-0002.2013.05.031 |
[5] |
孙照刚. 重视结核分枝杆菌抗原检测技术研发. 中国防痨杂志, 2022, 44(23):120-124. doi:10.19982/j.issn.1000-6621.20210558.
doi: 10.19982/j.issn.1000-6621.20210558 |
[6] |
Banerjee S, Kumar S, Harinath BC. Isolation and characterisation of in vivo released 41 kDa mycobacterial antigen in pulmonary and bone and joint tuberculosis and its identification with H37Ra in vitro released antigen. Int J Tuberc Lung Dis, 2003, 7(3): 278-283.
pmid: 12661844 |
[7] |
Shende N, Upadhye V, Kumar S, et al. A low molecular weight ES-20 protein released in vivo and in vitro with diagnostic potential in lymph node tuberculosis. Indian J Med Microbiol, 2008, 26(1): 29-33. doi:10.4103/0255-0857.38854.
doi: 10.4103/0255-0857.38854 |
[8] |
Harinath BC. Mycobacterial excretory secretory-31 protein with serine protease and lipase activities: An immunogen and drug target against tuberculosis infection. Int J Mycobacteriol, 2016, 5 Suppl 1:S86-S87. doi:10.1016/j.ijmyco.2016.09.065.
doi: 10.1016/j.ijmyco.2016.09.065 pmid: 28043634 |
[9] |
Attallah AM, Osman S, Saad A, et al. Application of a circulating antigen detection immunoassay for laboratory diagnosis of extra-pulmonary and pulmonary tuberculosis. Clin Chim Acta, 2005, 356(1-2): 58-66. doi:10.1016/j.cccn.2004.11.036.
doi: 10.1016/j.cccn.2004.11.036 pmid: 15936303 |
[10] |
Wadee AA, Boting L, Reddy SG. Antigen capture assay for detection of a 43-kilodalton Mycobacterium tuberculosis antigen. J Clin Microbiol, 1990, 28(12): 2786-2791. doi:10.1128/jcm.28.12.2786-2791.1990.
doi: 10.1128/jcm.28.12.2786-2791.1990 pmid: 2126267 |
[11] |
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol, 2012, 12(5):352-366. doi:10.1038/nri3211.
doi: 10.1038/nri3211 pmid: 22517424 |
[12] |
Saha D, Rautela K, Kumar A, et al. Patterns of granulomatous responses in TB lymphadenitis and their correlation with treatment outcomes. Indian J Tuberc, 2016, 63(3): 171-175. doi:10.1016/j.ijtb.2016.08.008.
doi: 10.1016/j.ijtb.2016.08.008 URL |
[13] | Goel MM, Budhwar P. Immunohistochemical localization of Mycobacterium tuberculosis complex antigen with antibody to 38 kDa antigen versus ZiehlNeelsen staining in tissue granulomas of extrapulmonary tuberculosis. Indian J Tuberc, 2007, 54(1): 24-29. |
[14] |
Mustafa T, Leversen NA, Sviland L, et al. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis, 2014, 14: 535. doi:10.1186/1471-2334-14-535.
doi: 10.1186/1471-2334-14-535 URL |
[15] |
Osada-oka M, Tateishi Y, Hirayama Y, et al. Antigen 85A and mycobacterial DNA-binding protein 1 are targets of immunoglobulin G in individuals with past tuberculosis. Microbiol Immunol, 2013, 57(1): 30-37. doi:10.1111/j.1348-0421.2012.12005.x.
doi: 10.1111/j.1348-0421.2012.12005.x pmid: 23157580 |
[16] |
Zhou Y, Xiong H, Chen R, et al. Aptamer Detection of Mycobaterium tuberculosis Mannose-Capped Lipoarabinomannan in Lesion Tissues for tuberculosis Diagnosis. Front Cell Infect Microbiol, 2021, 11: 634915. doi:10.3389/fcimb.2021.634915.
doi: 10.3389/fcimb.2021.634915 |
[17] | Rajpal SK, Snehal SW, Milind SP, et al. Mycobacterium tuberculosis Heat Shock Protein 16 as a Potential Marker for Latent TB: A Preliminary Findings. J Clin Cell Immunol, 2011, 2(5): 1-4. doi:10.4172/2155-9899.1000115. |
[18] |
Peláez EC, Estevez MC, Mongui A, et al. Detection and Quantification of HspX Antigen in Sputum Samples Using Plasmonic Biosensing: Toward a Real Point-of-Care (POC) for tuberculosis Diagnosis. ACS Infect Dis, 2020, 6(5): 1110-1120. doi:10.1021/acsinfecdis.9b00502.
doi: 10.1021/acsinfecdis.9b00502 pmid: 32233503 |
[19] |
Jones A, Saini J, Kriel B, et al. Sputum lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load: exploratory and model-based analyses of integrated data from four cohorts. BMC Infect Dis, 2022, 22(1): 327. doi:10.1186/s12879-022-07308-3.
doi: 10.1186/s12879-022-07308-3 pmid: 35366820 |
[20] |
Kawasaki M, Echiverri C, Raymond L, et al. Lipoarabinomannan in sputum to detect bacterial load and treatment response in patients with pulmonary tuberculosis: Analytic validation and evaluation in two cohorts. PLoS Med, 2019, 16(4): e1002780. doi:10.1371/journal.pmed.1002780.
doi: 10.1371/journal.pmed.1002780 |
[21] |
Purohit MR, Sviland L, Wiker H, et al. Rapid and Specific Diagnosis of Extrapulmonary tuberculosis by Immunostaining of Tissues and Aspirates With Anti-MPT64. Appl Immunohistochem Mol Morphol, 2017, 25(4):282-288. doi:10.1097/PAI.0000000000000300.
doi: 10.1097/PAI.0000000000000300 URL |
[22] |
Raheem TY, Ojo O, Adenipekun EO, et al. Performance assessment of SD Bioline TB MPT64 assay for the diagnosis of Mycobacterium tuberculosis complex in Lagos, Nigeria. J Immunoassay Immunochem, 2021, 42(5):543-558. doi:10.1080/15321819.2021.1911812.
doi: 10.1080/15321819.2021.1911812 URL |
[23] |
Grønningen E, Nanyaro M, Sviland L, et al. MPT64 antigen detection test improves diagnosis of pediatric extrapulmonary tuberculosis in Mbeya, Tanzania. Sci Rep, 2021, 11(1):17540. doi:10.1038/s41598-021-97010-2.
doi: 10.1038/s41598-021-97010-2 |
[24] |
Huynh J, Donovan J, Phu NH, et al. Tuberculous meningitis: progress and remaining questions. Lancet Neurol, 2022, 21(5):450-464. doi:10.1016/S1474-4422(21)00435-X.
doi: 10.1016/S1474-4422(21)00435-X pmid: 35429482 |
[25] |
Song FX, Sun XW, Wang XT, et al. Significance of Mycobacterium tuberculosis antigen expression in cerebrospinal fluid monocytes in diagnosing tuberculous meningitis. Indian J Pathol Microbiol, 2014, 57(2): 265-268. doi:10.4103/0377-4929.134705.
doi: 10.4103/0377-4929.134705 URL |
[26] |
Bekmurzayeva A, Sypabekova M, Kanayeva D. Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2013, 93(4): 381-388. doi:10.1016/j.tube.2013.03.003.
doi: 10.1016/j.tube.2013.03.003 URL |
[27] |
姜晓颖, 李传友. 结核病血清学检测的研究进展. 国际呼吸杂志, 2012, 32(17):1354-1357. doi:10.3760/cma.j.issn.1673-436X.
doi: 10.3760/cma.j.issn.1673-436X |
[28] |
Mudaliar AV, Kashyap RS, Purohit HJ, et al. Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients. BMC Neurol, 2006, 6:34. doi:10.1186/1471-2377-6-34.
doi: 10.1186/1471-2377-6-34 pmid: 16978411 |
[29] | WHO Guidelines Approved by the Guidelines Review Committee. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. Geneva: World Health Organization, 2013. |
[30] |
Nhu NT, Heemskerk D, Thu Do DA, et al. Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J Clin Microbiol, 2014, 52(1): 226-233. doi:10.1128/JCM.01834-13.
doi: 10.1128/JCM.01834-13 pmid: 24197880 |
[31] |
Patel VB, Theron G, Lenders L, et al. Diagnostic accuracy of quantitative PCR (Xpert MTB/RIF) for tuberculous meningitis in a high burden setting: a prospective study. PLoS Med, 2013, 10(10): e1001536. doi:10.1371/journal.pmed.1001536.
doi: 10.1371/journal.pmed.1001536 |
[32] |
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of tuberculosis: How Far Are We to Use It?. Front Microbiol, 2021, 12: 638047. doi:10.3389/fmicb.2021.638047.
doi: 10.3389/fmicb.2021.638047 |
[33] |
CHoudhary A, Patel D, Honnen W, et al. Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of Mycobacterium tuberculosis, and Complexity of Antibody Specificities toward This Antigen. J Immunol, 2018, 200(9): 3053-3066. doi:10.4049/jimmunol.1701673.
doi: 10.4049/jimmunol.1701673 URL |
[34] |
Sigal GB, Pinter A, Lowary TL, et al. A Novel Sensitive Immunoassay Targeting the 5-Methylthio-d-Xylofuranose-Lipoarabinomannan Epitope Meets the WHO’s Performance Target for tuberculosis Diagnosis. J Clin Microbiol, 2018, 56(12):e01338-18. doi:10.1128/JCM.01338-18.
doi: 10.1128/JCM.01338-18 |
[35] |
Choudhry V, Saxena RK. Detection of Mycobacterium tuberculosis antigens in urinary proteins of tuberculosis patients. Eur J Clin Microbiol Infect Dis, 2002, 21(1): 1-5. doi:10.1007/s10096-001-0651-7.
doi: 10.1007/s10096-001-0651-7 URL |
[36] |
Seifert M, Vargas E, Ruiz-Valdepeñas Montiel V, et al. Detection and quantification of Mycobacterium tuberculosis antigen CFP 10 in serum and urine for the rapid diagnosis of active tuberculosis disease. Sci Rep, 2021, 11(1):19193. doi:10.1038/s41598-021-98471-1.
doi: 10.1038/s41598-021-98471-1 |
[37] |
Hamasur B, Bruchfeld J, Haile M, et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J Microbiol Methods, 2001, 45(1): 41-52. doi:10.1016/s0167-7012(01)00239-1.
doi: 10.1016/s0167-7012(01)00239-1 pmid: 11295196 |
[38] |
Dahiya B, Khan A, Mor P, et al. Detection of Mycobacterium tuberculosis lipoarabinomannan and CFP-10 (Rv3874) from urinary extracellular vesicles of tuberculosis patients by immuno-PCR. Pathog Dis, 2019, 77(5):ftz049. doi:10.1093/femspd/ftz049.
doi: 10.1093/femspd/ftz049 |
[39] |
Chuo ST, Chien JC, Lai CP. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci, 2018, 25(1): 91. doi:10.1186/s12929-018-0494-5.
doi: 10.1186/s12929-018-0494-5 URL |
[40] |
Shah M, Martinson NA, Chaisson RE, et al. Quantitative analysis of a urine-based assay for detection of lipoarabinomannan in patients with tuberculosis. J Clin Microbiol, 2010, 48(8): 2972-2974. doi:10.1128/JCM.00363-10.
doi: 10.1128/JCM.00363-10 pmid: 20534796 |
[41] |
De P, Amin AG, Valli E, et al. Estimation of D-Arabinose by Gas Chromatography/Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannanin Human Urine. PLoS One, 2015, 10(12):e0144088. doi:10.1371/journal.pone.0144088.
doi: 10.1371/journal.pone.0144088 |
[42] |
Seid G, Alemu A, Tsedalu T, et al. Value of urine-based lipoarabinomannan (LAM) antigen tests for diagnosing tuberculosis in children: systematic review and meta-analysis. IJID Reg, 2022, 4:97-104. doi:10.1016/j.ijregi.2022.06.004.
doi: 10.1016/j.ijregi.2022.06.004 |
[43] |
Paris L, Magni R, Zaidi F, et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med, 2017, 9(420):eaal2807. doi:10.1126/scitranslmed.aal2807.
doi: 10.1126/scitranslmed.aal2807 URL |
[44] |
De P, Shi L, Boot C, et al. Comparative Structural Study of Terminal Ends of Lipoarabinomannan from Mice Infected Lung Tissues and Urine of a tuberculosis Positive Patient. ACS Infect Dis, 2020, 6(2): 291-301. doi:10.1021/acsinfecdis.9b00355.
doi: 10.1021/acsinfecdis.9b00355 pmid: 31762254 |
[45] |
Pollock N, Dhiman R, Daifalla N, et al. Discovery of a unique Mycobacterium tuberculosis protein through proteomic analysis of urine from patients with active tuberculosis. Microbes Infect, 2018, 20(4): 228-235. doi:10.1016/j.micinf.2017.12.011.
doi: S1286-4579(17)30239-3 pmid: 29306028 |
[46] |
Young BL, Mlamla Z, Gqamana PP, et al. The identification of tuberculosis biomarkers in human urine samples. Eur Respir J, 2014, 43(6): 1719-1729. doi:10.1183/09031936.00175113.
doi: 10.1183/09031936.00175113 pmid: 24743962 |
[47] | Ashtekar MD, Dhalla AS, Mazarello TB, et al. A study of Mycobacterium tuberculosis antigen and antibody in cerebrospinal fluid and blood in tuberculous meningitis. Clin Immunol Immunopathol, 1987, 45(1): 29-34. doi:10.1016/0090- 1229(87)90108-5. |
[48] |
胡永亮, 孙卫国, 张灵霞, 等. 结核分枝杆菌Rv3425-Rv1168c蛋白融合表达与血清学评价. 中国人兽共患病学报, 2019, 35(1):1-4,10. doi:10.3969/j.issn.1002-2694.2018.00.211.
doi: 10.3969/j.issn.1002-2694.2018.00.211 |
[49] |
Sørensen AL, Nagai S, Houen G, et al. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun, 1995, 63(5): 1710-1717. doi:10.1128/iai.63.5.1710-1717.1995.
doi: 10.1128/iai.63.5.1710-1717.1995 pmid: 7729876 |
[50] |
Berthet FX, Rasmussen PB, Rosenkrands I, et al. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology (Reading), 1998, 144 (Pt 11): 3195-3203. doi:10.1099/00221287-144-11-3195.
doi: 10.1099/00221287-144-11-3195 URL |
[51] |
张民, 张新. 结核杆菌特异性抗原对结核病诊断价值的研究. 中国实用医药, 2015, 10(19):49-50. doi:10.14163/j.cnki.11-5547/r.2015.19.026.
doi: 10.14163/j.cnki.11-5547/r.2015.19.026 |
[52] |
吴桂玲, 王琳, 阿依古丽·依玛汉斯, 等. 结核分枝杆菌早期分泌靶抗原6与培养滤液蛋白10对痰检涂阴肺结核的诊断价值. 中国基层医药, 2017, 24(23):3601-3605. doi:10.3760/cma.j.issn.1008-6706.2017.23.021.
doi: 10.3760/cma.j.issn.1008-6706.2017.23.021 |
[53] |
冯晓燕, 陈坤, 宋晓国, 等. 结核分枝杆菌抗原优势肽段融合抗原38kD-ESAT6-CFP10的构建与抗原性初步检测. 中国实验诊断学, 2009, 13(3):285-288. doi:10.3969/j.issn.1007-4287.2009.03.001.
doi: 10.3969/j.issn.1007-4287.2009.03.001 |
[54] |
Khurshid S, Afzal M, Khalid R, et al. Potential of multi-component antigens for tuberculosis diagnosis. Biologicals, 2017, 48: 109-113. doi:10.1016/j.biologicals.2017.04.004.
doi: S1045-1056(17)30050-7 pmid: 28522247 |
[55] |
Zhang L, Ma H, Wan S, et al. Mycobacterium tuberculosis latency-associated antigen Rv1733c SLP improves the accuracy of differential diagnosis of active tuberculosis and latent tuberculosis infection. Chin Med J (Engl), 2021, 135(1):63-69. doi:10.1097/CM9.0000000000001858.
doi: 10.1097/CM9.0000000000001858 |
[56] |
Zhou F, Xu X, Cui X, et al. Development and Evaluation of a Fusion Polyprotein Based on HspX and Other Antigen Sequences for the Serodiagnosis of tuberculosis. Front Immunol, 2021, 12: 726920. doi:10.3389/fimmu.2021.726920.
doi: 10.3389/fimmu.2021.726920 |
[57] |
Srivastava S, Abraham PR, Mukhopadhyay S. Aptamers: An Emerging Tool for Diagnosis and Therapeutics in tuberculosis. Front Cell Infect Microbiol, 2021, 11: 656421. doi:10.3389/fcimb.2021.656421.
doi: 10.3389/fcimb.2021.656421 |
[58] |
Salimiyan Rizi K, Aryan E, Meshkat Z, et al. The overview and perspectives of biosensors and Mycobacterium tuberculosis: A systematic review. J Cell Physiol, 2021, 236(3):1730-1750. doi:10.1002/jcp.30007.
doi: 10.1002/jcp.30007 URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[13] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[14] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||