Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (5): 475-481.doi: 10.3969/j.issn.1000-6621.2021.05.012
• Original Articles • Previous Articles Next Articles
WU Tuo-ya*, SHI Jin, GUO Ji-dong, LIU Yuan-yuan, PANG Yu, LU Jie(), GAO Fei(
)
Received:
2020-12-31
Online:
2021-05-10
Published:
2021-04-30
Contact:
LU Jie,GAO Fei
E-mail:lujiebch@163.com;gaofeiwho@163.com
WU Tuo-ya, SHI Jin, GUO Ji-dong, LIU Yuan-yuan, PANG Yu, LU Jie, GAO Fei. Mechanism of miR-21-3p modulating the survival of Mycobacterium tuberculosis in host macrophage[J]. Chinese Journal of Antituberculosis, 2021, 43(5): 475-481. doi: 10.3969/j.issn.1000-6621.2021.05.012
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.05.012
引物名称 | 引物序列 (5'~3') | 片段长度 (bp) |
---|---|---|
白细胞介素6(IL-6) | 149 | |
正向 | ACTCACCTCTTCAGAACGAATTG | |
反向 | CCATCTTTGGAAGGTTCAGGTTG | |
肿瘤坏死因子α (TNF-α) | 220 | |
正向 | CCTCTCTCTAATCAGCCCTCTG | |
反向 | GAGGACCTGGGAGTAGATGAG | |
三磷酸甘油醛脱氢酶(GAPDH) | 197 | |
正向 | GGAGCGAGATCCCTCCAAAAT | |
反向 | GGCTGTTGTCATACTTCTCATGG | |
核转录因子Y亚基β (NFYB) | 197 | |
正向 | ATGACAATGGATGGTGACAGTTC | |
反向 | CTAGCCACGTTTGCTATTGGA | |
kelch样家族成员3 (KLHL3) | 88 | |
正向 | ATACTGCTGAAATCGAGGTGACT | |
反向 | TTCTGCCGAACATCCATGAGC | |
父系表达基因3 (PEG3) | 124 | |
正向 | CACGCAGTTCCAAATCGGGA | |
反向 | CGCTGCTGGATCACTGACTC | |
周期蛋白依赖性激酶8(CDK-8) | 110 | |
正向 | GGGATCTCTATGTCGGCATGT | |
反向 | CACACCTTCCTATCAGCATGAG | |
泛素化因子E4B (UBE4B) | 79 | |
正向 | CTACCTCCCCAATAGGTGCAT | |
反向 | GGCGAGCTGCTGAGAGAAC | |
蛋白磷酸酶1催化亚基(PPP1CC) | 171 | |
正向 | TTTGCTGCGACTTTTTGAGTACG | |
反向 | GCACATTCATGGTTCCCTCTGA |
组别 | CDK-8 [M(Q1,Q3)] | KLHL3 [M(Q1,Q3)] | UBE4B [M(Q1,Q3)] | PPP1CC [M(Q1,Q3)] | NFYB [M(Q1,Q3)] | PEG3 [M(Q1,Q3)] |
---|---|---|---|---|---|---|
miR-21-3p模拟物对照组 | 1.025 (0.917,1.116) | 1.005 (0.973,1.053) | 0.960 (0.818,1.035) | 0.989 (0.979,1.007) | 1.000 (0.982,1.050) | 1.000 (0.923,1.155) |
miR-21-3p模拟物组 | 0.445 (0.434,0.467) | 1.760 (1.629,1.919) | 1.671 (1.591,1.758) | 1.097 (1.000,1.182) | 1.599 (1.464,1.753) | 1.564 (1.490,1.645) |
抑制剂对照组 | 0.966 (0.947,1.042) | 1.010 (0.973,1.161) | 0.990 (0.818,1.115) | 1.022 (1.007,1.089) | 1.003 (0.993,1.173) | 1.007 (0.990,1.010) |
抑制剂组 | 1.255 (1.185,1.466) | 0.367 (0.330,0.401) | 1.697 (1.591,1.729) | 0.938 (0.889,1.034) | 0.451 (0.376,0.463) | 1.160 (1.083,1.220) |
U值a | <0.001 | <0.001 | <0.001 | 7.000 | <0.001 | <0.001 |
P值a | 0.002 | 0.002 | 0.002 | 0.093 | 0.002 | 0.002 |
U值b | <0.001 | <0.001 | <0.001 | 8.000 | <0.001 | <0.001 |
P值b | 0.002 | 0.002 | 0.002 | 0.121 | 0.002 | 0.002 |
[1] |
Xu G, Wang J, Gao GF, et al. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell, 2014,5(10):728-736. doi: 10.1007/s13238-014-0077-5.
doi: 10.1007/s13238-014-0077-5 URL pmid: 24938416 |
[2] |
Zhai W, Wu F, Zhang Y, et al. The immune escape mechanisms of Mycobacterium tuberculosis. Int J Mol Sci, 2019,20(2):340. doi: 10.3390/ijms20020340.
doi: 10.3390/ijms20020340 URL |
[3] |
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem, 2010,79:351-379. doi: 10.1146/annurev-biochem-060308-103103.
doi: 10.1146/annurev-biochem-060308-103103 URL pmid: 20533884 |
[4] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. doi: 10.1016/s0092-8674(04)00045-5.
doi: 10.1016/s0092-8674(04)00045-5 URL pmid: 14744438 |
[5] |
Sonkoly E, Ståhle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol, 2008,18(2):131-140. doi: 10.1016/j.semcancer.2008.01.005.
doi: 10.1016/j.semcancer.2008.01.005 URL |
[6] |
Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity, 2007,26(2):133-137. doi: 10.1016/j.immuni.2007.02.005.
doi: 10.1016/j.immuni.2007.02.005 URL |
[7] |
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature, 2005,435(7043):834-838. doi: 10.1038/nature03702.
doi: 10.1038/nature03702 URL pmid: 15944708 |
[8] |
Pink RC, Samuel P, Massa D, et al. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol, 2015,137(1):143-151. doi: 10.1016/j.ygyno.2014.12.042.
doi: 10.1016/j.ygyno.2014.12.042 URL pmid: 25579119 |
[9] |
Zhu Y, Tang H, Zhang L, et al. Suppression of miR-21-3p enhances TRAIL-mediated apoptosis in liver cancer stem cells by suppressing the PI3K/Akt/Bad cascade via regulating PTEN. Cancer Manag Res, 2019,11:955-968. doi: 10.2147/CMAR.S183328.
doi: 10.2147/CMAR.S183328 URL pmid: 30774424 |
[10] |
Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One, 2013,8(9):e75628. doi: 10.1371/journal.pone.0075628.
doi: 10.1371/journal.pone.0075628 URL pmid: 24098708 |
[11] |
Ge X, Li W, Huang S, et al. Increased miR-21-3p in injured brain microvascular endothelial cells after traumatic brain injury aggravates blood-brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B. J Neurotrauma, 2019,36(8):1291-1305. doi: 10.1089/neu.2018.5728.
doi: 10.1089/neu.2018.5728 URL pmid: 29695199 |
[12] |
Wang T, Jiang L, Wei X, et al. MiR-21-3p aggravates injury in rats with acute hemorrhagic necrotizing pancreatitis by activating TRP signaling pathway. Biomed Pharmacother, 2018,107:1744-1753. doi: 10.1016/j.biopha.2018.08.164.
doi: 10.1016/j.biopha.2018.08.164 URL pmid: 30257393 |
[13] |
Xia B, Lu J, Wang R, et al. miR-21-3p regulates influenza a virus replication by targeting histone deacetylase-8. Front Cell Infect Microbiol, 2018,8:175. doi: 10.3389/fcimb.2018.00175.
doi: 10.3389/fcimb.2018.00175 URL pmid: 29888214 |
[14] |
Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer, 2006,6(4):259-269. doi: 10.1038/nrc1840.
doi: 10.1038/nrc1840 URL pmid: 16557279 |
[15] |
Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol, 2016,17(6):677-686. doi: 10.1038/ni.3434.
doi: 10.1038/ni.3434 URL pmid: 27089382 |
[16] |
Kim JK, Lee HM, Park KS, et al. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy, 2016,13(2):423-441. doi: 10.1080/15548627.2016.1241922.
doi: 10.1080/15548627.2016.1241922 URL pmid: 27764573 |
[17] |
Liu F, Chen J, Wang P, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun, 2018,9(1):4295. doi: 10.1038/s41467-018-06836-4.
doi: 10.1038/s41467-018-06836-4 URL pmid: 30327467 |
[18] |
Wu Y, Sun Q, Dai L. Immune regulation of miR-30 on the Mycobacterium tuberculosis-induced TLR/MyD88 signaling pathway in THP-1 cells. Exp Ther Med, 2017,14(4):3299-3303. doi: 10.3892/etm.2017.4872.
URL pmid: 28912881 |
[19] |
Chen Z, Wang T, Liu Z, et al. Inhibition of autophagy by miR-30A induced by Mycobacteria tuberculosis as a possible mechanism of immune escape in human macrophages. Jpn J Infect Dis, 2015,68(5):420-424. doi: 10.7883/yoken.JJID.2014.466.
URL pmid: 25866116 |
[20] |
Yang T, Ge B. miRNAs in immune responses to Mycobacterium tuberculosis infection. Cancer Lett, 2018,431:22-30. doi: 10.1016/j.canlet.2018.05.028.
doi: 10.1016/j.canlet.2018.05.028 URL pmid: 29803788 |
[21] |
Korla K, Arrigo P, Mitra CK. Promoters, toll like receptors and microRNAs: a strange association. Indian J Biochem Biophys, 2013,50(3):169-176.
URL pmid: 23898479 |
[22] |
Moresco EM, Lavine D, Beutler B. Toll-like receptors. Curr Biol, 2011,21(13):R488-R493. doi: 10.1016/j.cub.2011.05.039.
URL pmid: 21741580 |
[23] |
Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol, 2014,5:578. doi: 10.3389/fimmu.2014.00578.
doi: 10.3389/fimmu.2014.00578 URL pmid: 25484882 |
[24] |
Li S, Yue Y, Xu W, et al. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One, 2013,8(12):e81438. doi: 10.1371/journal.pone.0081438.
doi: 10.1371/journal.pone.0081438 URL pmid: 24358114 |
[25] |
Mahadik K, Prakhar P, Rajmani RS, et al. c-Abl-TWIST1 epigenetically dysregulate inflammatory responses during mycobacterial infection by co-regulating bone morphogenesis protein and miR27a. Front Immunol, 2018,9:85. doi: 10.3389/fimmu.2018.00085.
doi: 10.3389/fimmu.2018.00085 URL pmid: 29449840 |
[26] | Menzl I, Witalisz-Siepracka A, Sexl V. CDK8-novel therapeutic opportunities. Pharmaceuticals (Basel), 2019,12(2):92. doi: 10.3390/ph12020092. |
[27] |
Chen M, Liang J, Ji H, et al. CDK8/19 Mediator kinases potentiate induction of transcription by NFkappaB. Proc Natl Acad Sci U S A, 2017,114(38):10208-10213. doi: 10.1073/pnas.1710467114.
doi: 10.1073/pnas.1710467114 URL pmid: 28855340 |
[28] |
Fant CB, Taatjes DJ. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription, 2018,10(2):76-90. doi: 10.1080/21541264.2018.1556915.
doi: 10.1080/21541264.2018.1556915 URL pmid: 30585107 |
[29] |
Yamamoto S, Hagihara T, Horiuchi Y, et al. Mediator cyclin-dependent kinases upregulate transcription of inflammatory genes in cooperation with NF-κB and C/EBPβ on stimulation of Toll-like receptor 9. Genes Cells, 2017,22(3):265-276. doi: 10.1111/gtc.12475.
URL pmid: 28151579 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||