Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (2): 101-107.doi: 10.3969/j.issn.1000-6621.2020.02.005
• Original Articles • Previous Articles Next Articles
SUN Jin-xia,ZHANG Qing-wen,LI Yin-hong,JIANG Xin()
Received:
2019-11-13
Online:
2020-02-10
Published:
2020-02-19
Contact:
Xin JIANG
E-mail:jiangxingao@163.com
SUN Jin-xia,ZHANG Qing-wen,LI Yin-hong,JIANG Xin. Study of autophagy induced by myricetin in MTB infected macrophages through PI3K/Akt/mTOR signaling pathway[J]. Chinese Journal of Antituberculosis, 2020, 42(2): 101-107. doi: 10.3969/j.issn.1000-6621.2020.02.005
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.02.005
杨梅素 (μmol/L) | 24h细胞存活率 (%, | t值a | P值a | 48h细胞存活率 (%, | t值b | P值b | 72h细胞存活率 (%, | t值c | P值c |
---|---|---|---|---|---|---|---|---|---|
空白组 | 99.35±0.76 | 101.90±1.28 | 94.50±2.85 | ||||||
12.5 | 96.99±3.45 | 0.67 | 0.54 | 92.13±1.82 | 5.34 | 0.01 | 89.75±3.36 | 1.08 | 0.34 |
25 | 90.68±0.44 | 9.95 | 0.00 | 92.07±2.00 | 4.13 | 0.02 | 89.54±1.49 | 1.54 | 0.20 |
50 | 88.39±1.26 | 7.45 | 0.00 | 91.57±1.53 | 5.18 | 0.01 | 91.24±0.96 | 1.09 | 0.34 |
100 | 92.40±0.68 | 6.83 | 0.00 | 93.82±0.47 | 5.93 | 0.00 | 86.48±2.26 | 2.21 | 0.09 |
200 | 89.03±0.86 | 9.02 | 0.00 | 92.13±1.82 | 4.38 | 0.01 | 79.65±1.36 | 4.71 | 0.01 |
组别 | LC3Ⅱ蛋白相对灰度值 ( | t值 | P值 | p62蛋白相对灰度值 ( | t值 | P值 |
---|---|---|---|---|---|---|
空白组 | 0.36±0.01 | 0.51±0.02 | ||||
模型组 | 0.52±0.01 | 8.85a | 0.00a | 0.86±0.02 | 10.98c | 0.00c |
杨梅素12.5μmol/L组 | 0.59±0.02 | 2.97b | 0.04b | 0.72±0.01 | 6.50d | 0.00d |
杨梅素25μmol/L组 | 0.65±0.01 | 7.91b | 0.00b | 0.85±0.00 | 0.81d | 0.46d |
杨梅素50μmol/L组 | 0.71±0.01 | 9.77b | 0.00b | 0.60±0.02 | 9.53d | 0.00d |
杨梅素100μmol/L组 | 0.83±0.01 | 16.37b | 0.00b | 0.58±0.01 | 12.01d | 0.00d |
组别 | p-Akt蛋白相对灰度值 ( | t值 | P值 | p-mTOR蛋白相对灰度值 ( | t值 | P值 |
---|---|---|---|---|---|---|
空白组 | 0.19±0.01 | 0.27±0.00 | ||||
模型组30min | 1.23±0.01 | 84.60a | 0.00a | 0.28±0.01 | 0.60f | 0.58f |
模型组60min | 1.52±0.01 | 66.79a | 0.00a | 0.27±0.01 | 0.36f | 0.74f |
模型组180min | 0.74±0.02 | 30.49a | 0.00a | 0.57±0.00 | 94.61f | 0.00f |
空白+杨梅素 | 0.19±0.00 | 0.92b | 0.41b | 0.29±0.00 | 0.91g | 0.41g |
杨梅素30min | 0.99±0.01 | 27.60c | 0.00c | 0.29±0.01 | 1.31h | 0.26h |
杨梅素60min | 0.96±0.01 | 30.06d | 0.00d | 0.33±0.01 | 2.31i | 0.08i |
杨梅素180min | 0.43±0.01 | 18.60e | 0.00e | 0.46±0.01 | 21.60j | 0.00j |
[1] | World Health Organization . Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] | Zumla A, Rao M, Parida SK , et al. Inflammation and tuberculosis: host-directed therapies. J Intern Med, 2015,277(4):373-387. |
[3] | Yang Z, Klionsky DJ . Eaten alive: a history of macroauto-phagy. Nat Cell Biol, 2010,12(9):814-822. |
[4] | Castrejón-Jiménez NS, Leyva-Paredes K, Hernández-González JC , et al. The role of autophagy in bacterial infections. Biosci Trends, 2015,9(3):149-159. |
[5] | Awuh JA, Flo TH . Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci, 2017,74(9):1625-1648. |
[6] | Weiss G, Schaible UE . Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015,264(1):182-203. |
[7] | Moraco AH, Kornfeld H . Cell death and autophagy in tuberculosis (Review). Semin Immunol, 2014,26(6):497-511. |
[8] | Khan N, Vidyarthi A, Javed S , et al. Innate immunity holding the flanks untilreinforced by adaptive immunity against Mycobacterium tuberculosis infection. Front Microbiol, 2016,7:328. |
[9] | Gutierrez MG, Master SS, Singh SB , et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004,119(6):753-766. |
[10] | Gupta A, Misra A, Deretic V . Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis. Adv Drug Deliv Rev, 2016,102:10-20. |
[11] | Sachan M, Srivastava A, Ranjan R , et al. Opportunities and Challenges for Host-Directed Therapies in Tuberculosis. Curr Pharm Des, 2016,22(17):2599-2604. |
[12] | Iyer SC, Gopal A, Halagowder D . Myricetin inducesapoptosis by inhibiting P21 activated kinase 1 (PAK1)signaling cascade in hepatocellular carcinoma. MolCell Biochem, 2015,407(1/2):223-237. |
[13] | Hassan SM, Khalaf MM, Sadek SA , et al. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxi-city in mice. Pharm Biol, 2017,55(1):766-774. |
[14] | Hou W, Hu S, Su Z , et al. Myricetin attenuates LPS-induced inflammation in RAW 264. 7 macrophages and mouse models. Future Med Chem, 2018,10(19):2253-2264. |
[15] | Ren R, Yin S, Lai B , et al. Myricetin antagonizes semen-derived enhancer of viral infection (SEVI) formation and in-fluences its infection-enhancing activity. Retrovirology, 2018,15(1):49. |
[16] | Ortega JT, Suárez AI, Serrano ML , et al. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther, 2017,14(1):57. |
[17] | Tong Y, Zhou XM, Wang SJ , et al. Analgesic activity of myri-cetin isolated from Myrica rubra Sieb. et Zucc. leaves. Arch Pharm Res, 2009,32(4):527-533. |
[18] | 陈兰芳, 肖亮, 杨军平 . 细胞自噬的分子机制及其功能. 实验与检验医学, 2014,32(2):157-163. |
[19] | Mcmanus S, Roux S . The adaptor protein p62/SQSTM1 in osteoclast signaling pathways. J Mol Signal, 2012,7:1-8. |
[20] | Park S, Choi SG, Yoo SM , et al. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy, 2014,10:1906-1920. |
[21] | Bah A, Lacarriere C, Vergne I . Autophagy-related proteins target ubiquitin-free Mycobacterial compartment to promote killing in macrophages. Front Cell Infect Microbiol, 2016,6:53. |
[22] | Deretic V . Autophagy in tuberculosis. Cold Spring Harb Perspect Med, 2014,4(11):a018481. |
[23] | Silva LN, Da Hora GCA, Soares TA , et al. Myricetin protects galleria mellonella against staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep, 2017,7(1):2823. |
[24] | Arita-Morioka K, Yamanaka K, Mizunoe Y , et al. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother, 2015,59(1):633-641. |
[25] | 张莉静, 王明谦 . 杨梅素体内抗菌抗炎药效学研究. 时珍国医国药, 2010,21(12):3221-3222. |
[26] | Cao J, Chen H, Lu W , et al. Myricetin induces protective autophagy by inhibiting the phosphorylation of mTOR in HepG2 Cells. Anat Rec (Hoboken), 2018,301(5):786-795. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||