Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (3): 248-254.doi: 10.3969/j.issn.1000-6621.2021.03.010
• Original Articles • Previous Articles Next Articles
WANG Xi-jiang*, TAN Yun-hong, HE Wen-cong, OU Xi-chao, LIU Dong-xin, ZHAO Yan-lin()
Received:
2020-10-29
Online:
2021-03-10
Published:
2021-03-03
Contact:
ZHAO Yan-lin
E-mail:zhaoyl@chinacdc.cn
WANG Xi-jiang, TAN Yun-hong, HE Wen-cong, OU Xi-chao, LIU Dong-xin, ZHAO Yan-lin. The correlation between rifampicin and isoniazid resistance-related gene mutations and resistance level in Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(3): 248-254. doi: 10.3969/j.issn.1000-6621.2021.03.010
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.03.010
名称 | 耐药基因 | 表型耐药菌株数 | |
---|---|---|---|
突变位点 | 菌株数(构成比,%) | ||
rpoB | Asp435Tyr | 1(1.41) | 1 |
Asp435Val | 2(2.82) | 2 | |
Asp435Gly+Leu430Arg | 1(1.41) | 1 | |
His445Asp | 4(5.63) | 4 | |
His445Leu | 5(7.04) | 5 | |
His445Tyr | 4(5.63) | 4 | |
His445Gln+Leu430Pro | 1(1.41) | 1 | |
His445Arg+Gln429His | 1(1.41) | 1 | |
His445Tyr+Asp435Phe | 5(7.04) | 5 | |
Ile491Phe | 1(1.41) | 1 | |
Leu430Pro | 1(1.41) | 0 | |
Leu430Pro+Ser431Gly | 3(4.22) | 3 | |
Leu443Trp+Thr444Pro | 2(2.82) | 2 | |
Leu452Pro | 3(4.22) | 3 | |
Ser441Leu | 2(2.82) | 2 | |
Ser450Leu | 31(43.66) | 31 | |
Ser450Phe | 1(1.41) | 1 | |
Ser450Trp | 1(1.41) | 1 | |
rpoB+rpoC | Leu452Pro+Ile885Val | 1(1.41) | 1 |
Ser450Leu+Gly332Arg | 1(1.41) | 1 | |
合计 | 71(100.00) | 70 |
名称 | 耐药基因 | 表型耐药菌株数 | |
---|---|---|---|
突变位点 | 表型耐药菌株数(构成比,%) | ||
ahpC | G-48A promoter | 3(2.94) | 3 |
C-52T promoter | 1(0.98) | 1 | |
C-54T promoter | 1(0.98) | 1 | |
C-81T promoter | 2(1.96) | 2 | |
C-81T+G-74A promoter | 1(0.98) | 1 | |
katG | Ala109Val | 1(0.98) | 1 |
Ser315Asn | 13(12.75) | 13 | |
Ser315Thr | 57(55.88) | 57 | |
Val1Ala | 1(0.98) | 1 | |
146_147insTGCA | 1(0.98) | 1 | |
fabG1 | C-15T promoter | 9(8.83) | 9 |
fabG1+ahpC | C-15T promoter+G-48A promoter | 1(0.98) | 1 |
fabG1+inhA | C-15T promoter+Ile21Val | 1(0.98) | 1 |
fabG1+katG | C-15T promoter+Tyr155Cys | 1(0.98) | 1 |
C-15T+Tyr155Cys+Ser315Thr | 1(0.98) | 1 | |
C-15T promoter+Ser315Thr | 1(0.98) | 1 | |
C-15T promoter+Tyr155Cys | 2(1.96) | 2 | |
C-15T promoter+Ala106Val | 1(0.98) | 1 | |
katG+ahpC | 1472_1473insG+C-54T promoter | 1(0.98) | 1 |
1856_1857insT+C-81T promoter | 1(0.98) | 1 | |
Thr380Ile+C-52T promoter | 1(0.98) | 1 | |
Tyr413His+G-48A promoter | 1(0.98) | 1 | |
合计 | 102(100.00) | 102 |
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] |
Rosales-Klintz S, Jureen P, Zalutskayae A, et al. Drug resis-tance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions. Int J Mycobacteriol, 2012,1(3):124-130. doi: 10.1016/j.ijmyco.2012.08.001.
doi: 10.1016/j.ijmyco.2012.08.001 URL pmid: 26787207 |
[3] |
Seifert M, Catanzaro D, Catanzaro A, et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One, 2015,10(3):e0119628. doi: 10.1371/journal.pone.0119628.
doi: 10.1371/journal.pone.0119628 URL pmid: 25799046 |
[4] | 赵雁林, 逄宇. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 32. |
[5] |
Abuali MM, Katariwala R, LaBombardi VJ. A comparison of the Sensititre(R) MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis. Eur J Clin Microbiol, 2012,31(5):835-839. doi: 10.1007/s10096-011-1382-z.
doi: 10.1007/s10096-011-1382-z URL |
[6] |
Hall L, Jude KP, Clark SL, et al. Evaluation of the Sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J Clin Microbiol, 2012,50(11):3732-3734. doi: 10.1128/JCM.02048-12.
doi: 10.1128/JCM.02048-12 URL pmid: 22895034 |
[7] | 郑扬, 夏辉, 赵雁林. TREK Sensititre® MYCOTB 检测结核分枝杆菌对一、二线抗结核药物的敏感性研究 . 中国防痨杂志, 2015,37(6):597-602. doi: 10.3969/j.issn.1000-6621.2015.06.005. |
[8] |
Coll F, McNerney R, Preston M, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL pmid: 26019726 |
[9] |
Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018,23(12):1098-1113. doi: 10.1111/resp.13393.
doi: 10.1111/resp.13393 URL pmid: 30189463 |
[10] |
Madrazo-Moya CF, Cancino-Munoz I, Cuevas-Cordoba B, et al. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS One, 2019,14(6):e0213046. doi: 10.1371/journal.pone.0213046.
doi: 10.1371/journal.pone.0213046 URL pmid: 31166945 |
[11] | Kardan-Yamchi J, Kazemian H, Battaglia S, et al. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. J Clin Med, 2020,9(2):465. doi: 10.3390/jcm9020465. |
[12] | Tang K, Sun H, Zhao Y, et al. Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China. Tuberculosis (Edinb), 2013,93(1):89-95. doi: 10.1016/j.tube.2012.10.009. |
[13] |
Tavanaee Sani A, Ashna H, Kaffash A, et al. Mutations of rpob Gene Associated with Rifampin Resistance among Mycobacterium Tuberculosis Isolated in Tuberculosis Regional Reference Laboratory in Northeast of Iran during 2015-2016. Ethiop J Health Sci, 2018,28(3):299-304. doi: 10.4314/ejhs.v28i3.7.
doi: 10.4314/ejhs.v28i3.7 URL pmid: 29983529 |
[14] | Andre E, Goeminne L, Colmant A, et al. Novel rapid PCR for the detection of Ile491Phe rpoB mutation of Mycobacterium tuberculosis, a rifampicin-resistance-conferring mutation undetected by commercial assays. Clin Microbiol Infect, 2017,23(4):267.e5-267.e7. doi: 10.1016/j.cmi.2016.12.009. |
[15] | Chen L, Gan X, Li N, et al. rpoB gene mutation profile in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Guizhou, one of the highest incidence rate regions in China. J Antimicrob Chemoth, 2010,65(6):1299-1301. doi: 10.1093/jac/dkq102. |
[16] |
Jamieson FB, Guthrie JL, Neemuchwala A, et al. Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J Clin Microbiol, 2014,52(6):2157-2162. doi: 10.1128/JCM.00691-14.
doi: 10.1128/JCM.00691-14 URL pmid: 24740074 |
[17] |
Van Deun A, Aung KJ, Bola V, et al. Rifampin drug resis-tance tests for tuberculosis: challenging the gold standard. J Clin Microbiol, 2013,51(8):2633-2640. doi: 10.1128/JCM.00553-13.
doi: 10.1128/JCM.00553-13 URL pmid: 23761144 |
[18] |
Torrea G, Ng K, Van Deun A, et al. Variable ability of rapid tests to detect mycobacterium tuberculosis rpob mutations conferring phenotypically occult rifampicin resistance. Scientific reports, 2019,9:11826. doi: 10.1038/s41598-019-48401-z.
doi: 10.1038/s41598-019-48401-z URL pmid: 31413308 |
[19] | Liu L, Jiang F, Chen L, et al. The impact of combined gene mutations in inhA and ahpC genes on high levels of isoniazid resistance amongst katG non-315 in multidrug-resistant tuberculosis isolates from China. Emerg Microbes Infec, 2018,7(1):183. doi: 10.1038/s41426-018-0184-0. |
[20] | Dookie N, Rambaran S, Padayatchi N, et al. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemoth, 2018,73(5):1138-1151. doi: 10.1093/jac/dkx506. |
[21] | Jagielski T, Bakula Z, Roeske K, et al. Mutation profiling for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemoth, 2015,70(12):3214-3221. doi: 10.1093/jac/dkv253. |
[22] |
Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China. J Clin Microbiol, 2005,43(11):5477-5482. doi: 10.1128/JCM.43.11.5477-5482.2005.
doi: 10.1128/JCM.43.11.5477-5482.2005 URL pmid: 16272473 |
[23] |
Kigozi E, Kasule GW, Musisi K, et al. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One, 2018,13(5):e0198091. doi: 10.1371/journal.pone.0198091.
doi: 10.1371/journal.pone.0198091 URL pmid: 29847567 |
[24] |
Katiyar SK, Bihari S, Prakash S, et al. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis, 2008,12(2):139-145.
URL pmid: 18230245 |
[25] |
Walsh KF, Vilbrun SC, Souroutzidis A, et al. Improved Outcomes With High-dose Isoniazid in Multidrug-resistant Tuberculosis Treatment in Haiti. Clin Infect Dis, 2019,69(4):717-719. doi: 10.1093/cid/ciz039.
doi: 10.1093/cid/ciz039 URL pmid: 30698688 |
[26] |
Colangeli R, Jedrey H, Kim S, et al. Bacterial Factors That Predict Relapse after Tuberculosis Therapy. New Engl J Med, 2018,379(9):823-833. doi: 10.1056/NEJMoa1715849.
doi: 10.1056/NEJMoa1715849 URL pmid: 30157391 |
[1] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[2] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[3] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[4] | Mei Chunlin, Yang Chengqing, Du Ronghui, Cao Tanze, Feng Wei, Chen Shufang, Liu Xiuping, Ou Jiali. Diagnostic accuracy of GeneXpert MTB/RIF in detecting pulmonary tuberculosis with extremely low loads of MTB in bronchoalveolar lavage fluid in general hospitals [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1037-1041. |
[5] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[6] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[7] | Zhang Hongtai, Ren Yixuan, Hu peilei, Wang Nenhan, Li Jie, Tian Lili, Zhao Yanfeng, Chen Shuangshuang, Li Chuanyou. Comparison of microbiota diversity in the sputum of pulmonary tuberculosis patients with rifampicin resistance or sensitivity [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 625-633. |
[8] | Ge Fei, Zhu Hui, Cheng Kai, Lu Yu, Xu Jian. Study on the determination of isoniazid and its metabolites concentration in plasma by high-performance liquid chromatography-mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 549-556. |
[9] | Yang Chen, Gao Weiwei, Guo Yicheng, Zeng Yi. Research progress on nanopore-based targeted sequencing in identification of Mycobacterium tuberculosis and detection of drug-resistant genes [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 578-583. |
[10] | Cheng Mengli, Jiang Guanglu, Huo Fengmin, Xue Yi, Yu Xia. Evaluation of in vitro activity of fusidic acid against mycobacteria [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 461-466. |
[11] | Pei Shaojun, Ou Xichao. Interpretation of the World Health Organization’s Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 260-266. |
[12] | National Center of Medical Quality Control for Respiratory Diseases , Tuberculosis Branch of Chinese Medical Association , Tuberculosis Control Branch of Chinese Antituberculosis Association , China-Japan Friendship Hospital . Clinical practice guidelines for early detection of pulmonary tuberculosis in general medical facilities [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 127-140. |
[13] | Gulina Badeerhan, Liu Nianqiang, Yipaer Aihaiti, Wang Le, Wang Senlu, Zulikatiayi Abudula, Wang Mingzhe, Zhang Jing, Wang Xinqi, Bi Hongbo. The effect of GeneXpert MTB/RIF detection technology in tuberculosis prevention and control program in Xinjiang [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 173-177. |
[14] | Ruan Yunzhou, Su Wei, Zhang Hui, Zhao Yanlin. Historical evolution and prospect of rifampicin-resistant tuberculosis prevention and control in China [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1166-1170. |
[15] | Li Jing, Jiang Qi, Jiang Yuan, Shen Xin. Evaluation of performance of PCR fluorescent probe method for detecting Mycobacterium tuberculosis complex and rifampicin resistance [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1250-1258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||