Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (5): 578-583.doi: 10.19982/j.issn.1000-6621.20240049
• Review Articles • Previous Articles Next Articles
Yang Chen1, Gao Weiwei2, Guo Yicheng1, Zeng Yi2()
Received:
2024-02-05
Online:
2024-05-10
Published:
2024-04-29
Contact:
Zeng Yi, Email: CLC Number:
Yang Chen, Gao Weiwei, Guo Yicheng, Zeng Yi. Research progress on nanopore-based targeted sequencing in identification of Mycobacterium tuberculosis and detection of drug-resistant genes[J]. Chinese Journal of Antituberculosis, 2024, 46(5): 578-583. doi: 10.19982/j.issn.1000-6621.20240049
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240049
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | 崔晓敬, 魏栋, 王春雷, 等. 分子生物学和液体培养方法提高综合医院结核病病原学诊断能力的价值. 中国防痨杂志, 2021, 43(2): 143-146. doi:10.3969/j.issn.1000-6621.2021.02.008. |
[3] | 张海霞, 张觅, 腾晓燕, 等. GeneXpert法与涂片抗酸染色法检测结核分枝杆菌的比较研究. 南京医科大学学报(自然科学版), 2022, 42(1): 129-132. doi:10.7655/nydxbns20220125. |
[4] | 梁晨, 唐神结. 临床结核病病原体分子生物学诊断年度进展2022. 中华结核和呼吸杂志, 2023, 46(2): 176-182. doi:10.3760/cma.j.cn112147-20221030-00857. |
[5] | World Health Organization. Use of targeted next-generation sequencing to detect drug-resistant tuberculosis: rapid communication, July 2023[EB/OL]. [2024-01-29]. https://www.who.int/publications/i/item/9789240076372. |
[6] | Schmidt J, Blessing F, Fimpler L, et al. Nanopore Sequencing in a Clinical Routine Laboratory: Challenges and Opportunities. Clin Lab, 2020, 66(6). doi:10.7754/Clin.Lab.2019.191114. |
[7] | 谭聃, 欧铜. 第三代测序技术的研究进展与临床应用. 生物工程学报, 2022, 38(9): 3121-3130. doi:10.13345/j.cjb.220063. |
[8] | Gómez-González PJ, Campino S, Phelan JE, et al. Portable sequencing of Mycobacterium tuberculosis for clinical and epidemiological applications. Brief Bioinform, 2022, 23(5): bbac256. doi:10.1093/bib/bbac256. |
[9] |
Sun X, Song L, Yang W, et al. Nanopore Sequencing and Its Clinical Applications. Methods Mol Biol, 2020, 2204: 13-32. doi:10.1007/978-1-0716-0904-0_2.
pmid: 32710311 |
[10] | Ling X, Wang C, Li L, et al. Third-generation sequencing for genetic disease. Clin Chim Acta, 2023, 551: 117624. doi:10.1016/j.cca.2023.117624. |
[11] | 高通量测序共识专家组. 高通量测序技术在分枝杆菌病诊断中的应用专家共识. 中华传染病杂志, 2023, 41(3): 175-182. doi:10.3760/cma.j.cn311365-20221203-00492. |
[12] |
Liu Z, Yang Y, Wang Q, et al. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fluid in pulmonary tuberculosis. BMC Pulm Med, 2023, 23(1): 77. doi:10.1186/s12890-023-02337-3.
pmid: 36890507 |
[13] | Yang J, Ye W, Zhang C, et al. Accuracy of Nanopore Sequencing as a Diagnostic Assay for Pulmonary Tuberculosis versus Smear, Culture and Xpert MTB/RIF: A Head-to-Head Comparison. Trop Med Infect Dis, 2023, 8(9): 441. doi:10.3390/tropicalmed8090441. |
[14] |
Yu G, Shen Y, Zhong F, et al. Diagnostic accuracy of nanopore sequencing using respiratory specimens in the diagnosis of pulmonary tuberculosis. Int J Infect Dis, 2022, 122: 237-243. doi:10.1016/j.ijid.2022.06.001.
pmid: 35671950 |
[15] | Alcaide F, Trastoy R, Moure R, et al. Multiplex Real-Time PCR-short(TUB) Assay for Detection of the Mycobacterium tuberculosis Complex in Smear-Negative Clinical Samples with Low Mycobacterial Loads. J Clin Microbiol, 2019, 57(8): e00733-19. doi:10.1128/jcm.00733-19. |
[16] | Mor P, Dahiya B, Parshad S, et al. Recent updates in diagnosis of abdominal tuberculosis with emphasis on nucleic acid amplification tests. Expert Rev Gastroenterol Hepatol, 2022, 16(1): 33-49. doi:10.1080/17474124.2022.2021068. |
[17] | 李姗姗, 王玉峰, 舒薇, 等. 结核病实验室诊断技术研发新进展. 中国防痨杂志, 2023, 45(5): 446-453. doi:10.19982/j.issn.1000-6621.20220535. |
[18] | Yu G, Shen Y, Yao L, et al. Evaluation of Nanopore Sequencing for Diagnosing Pulmonary Tuberculosis Using Negative Smear Clinical Specimens. Infect Drug Resist, 2024, 17: 673-682. doi:10.2147/idr.S442229. |
[19] | 闫晓婧, 王庆枫, 杨扬, 等. 支气管肺泡灌洗液纳米孔测序对涂片阴性肺结核诊断价值的验证性研究. 中国防痨杂志, 2023, 45(5): 487-492. doi:10.19982/j.issn.1000-6621.20230036. |
[20] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11): 918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[21] | Huang YY, Li QS, Li ZD, et al. Rapid diagnosis of Mycobacterium marinum infection using targeted nanopore sequencing: a case report. Front Cell Infect Microbiol, 2023, 13: 1238872. doi:10.3389/fcimb.2023.1238872. |
[22] | Aubry A, Mougari F, Reibel F, et al. Mycobacterium marinum. Microbiol Spectr, 2017, 5(2). doi:10.1128/microbiolspec.TNMI7-0038-2016. |
[23] |
Bouso JM, Planet PJ. Complete nontuberculous mycobacteria whole genomes using an optimized DNA extraction protocol for long-read sequencing. BMC Genomics, 2019, 20(1): 793. doi:10.1186/s12864-019-6134-y.
pmid: 31666009 |
[24] | Patin NV, Goodwin KD. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. mSystems, 2022, 7(6): e0059522. doi:10.1128/msystems.00595-22. |
[25] | Guo Y, Li Z, Li L, et al. A dual-process of targeted and unbia-sed Nanopore sequencing enables accurate and rapid diagnosis of lower respiratory infections. EBioMedicine, 2023, 98: 104858. doi:10.1016/j.ebiom.2023.104858. |
[26] | Akalu GT, Tessema B, Petros B. High proportion of RR-TB and mutations conferring RR outside of the RRDR of the rpoB gene detected in GeneXpert MTB/RIF assay positive pulmonary tuberculosis cases, in Addis Ababa, Ethiopia. PLoS One, 2022, 17(12): e0277145. doi:10.1371/journal.pone.0277145. |
[27] | 江丽娜, 穆成, 孙蕊, 等. 二代线性探针技术在结核分枝杆菌耐药性检测中的价值. 中国防痨杂志, 2019, 41(11): 1184-1190. doi:10.3969/j.issn.1000-6621.2019.11.008. |
[28] | 蒋晓飞, 倪语星. 分子诊断技术在细菌耐药性检测中的应用. 中华检验医学杂志, 2020, 43(7): 702-706. doi:10.3760/cma.j.cn114452-20200306-00190. |
[29] | 黄海荣. 世界卫生组织《应用新一代靶向测序技术检测耐药结核病:快速通告,2023》解读. 中国防痨杂志, 2023, 45(10): 921-924. doi:10.19982/j.issn.1000-6621.20230311. |
[30] | Mariner-Llicer C, Goig GA, Zaragoza-Infante L, et al. Accuracy of an amplicon-sequencing nanopore approach to identify variants in tuberculosis drug-resistance-associated genes. Microb Genom, 2021, 7(12): 000740. doi:10.1099/mgen.0.000740. |
[31] | Tafess K, Ng TTL, Lao HY, et al. Targeted-Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis Cultures Using Two Commercial Sequencing Platforms: Comparison of Analytical and Diagnostic Performance, Turnaround Time, and Cost. Clin Chem, 2020, 66(6): 809-820. doi:10.1093/clinchem/hvaa092. |
[32] | Marin M, Vargas R, Harris M, et al. Benchmarking the empirical accuracy of short-read sequencing across the M.tuberculosis genome. Bioinformatics, 2022, 38(7): 1781-1787. doi:10.1093/bioinformatics/btac023. |
[33] | Di Marco F, Spitaleri A, Battaglia S, et al. Advantages of long- and short-reads sequencing for the hybrid investigation of the Mycobacterium tuberculosis genome. Front Microbiol, 2023, 14: 1104456. doi:10.3389/fmicb.2023.1104456. |
[34] | Hall MB, Rabodoarivelo MS, Koch A, et al. Evaluation of Nanopore sequencing for Mycobacterium tuberculosis drug susceptibility testing and outbreak investigation: a genomic analysis. Lancet Microbe, 2023, 4(2): e84-e92. doi:10.1016/s2666-5247(22)00301-9. |
[35] | Bainomugisa A, Duarte T, Lavu E, et al. A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions. Microb Genom, 2018, 4(7): e000188. doi:10.1099/mgen.0.000188. |
[36] | 周婷婷, 郑小曼, 欧阳净, 等. 结核分枝杆菌对吡嗪酰胺耐药的相关基因及耐药机制研究进展. 中国防痨杂志, 2022, 44(1): 102-105. doi:10.19982/j.issn.1000-6621.20210511. |
[37] | Liu A, Liu S, Lv K, et al. Rapid detection of multidrug resis-tance in tuberculosis using nanopore-based targeted next-generation sequencing: a multicenter, double-blind study. Front Microbiol, 2024, 15: 1349715. doi:10.3389/fmicb.2024.1349715. |
[38] | Wen C, Zeng S, Zhang Z, et al. On nanopore DNA sequencing by signal and noise analysis of ionic current. Nanotechnology, 2016, 27(21): 215502. doi:10.1088/0957-4484/27/21/215502. |
[39] | Chan WS, Au CH, Chung Y, et al. Rapid and economical drug resistance profiling with Nanopore MinION for clinical specimens with low bacillary burden of Mycobacterium tuberculosis. BMC Res Notes, 2020, 13(1): 444. doi:10.1186/s13104-020-05287-9. |
[40] |
Ransom EM, Potter RF, Dantas G, et al. Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes!. Clinical Chemistry, 2020, 66(10): 1278-1289. doi:10.1093/clinchem/hvaa172.
pmid: 32918462 |
[41] |
Rang FJ, Kloosterman WP, De Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol, 2018, 19(1): 90. doi:10.1186/s13059-018-1462-9.
pmid: 30005597 |
[42] | Huang YT, Liu PY, Shih PW. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homolo-gous polishing. Genome Biol, 2021, 22(1): 95. doi:10.1186/s13059-021-02282-6. |
[43] |
Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error correction methods. BMC Genomics, 2020, 21(Suppl 6): 889. doi:10.1186/s12864-020-07227-0.
pmid: 33349243 |
[44] |
Gao Y, He Y, Chen L, et al. Chimeric Phi29 DNA polymerase with helix-hairpin-helix motifs shows enhanced salt tolerance and replication performance. Microb Biotechnol, 2021, 14(4): 1642-1656. doi:10.1111/1751-7915.13830.
pmid: 34009743 |
[45] | Li S, Zeng S, Wen C, et al. Docking and Activity of DNA Polymerase on Solid-State Nanopores. ACS Sens, 2022, 7(5): 1476-1483. doi:10.1021/acssensors.2c00216. |
[46] |
Palla M, Punthambaker S, Stranges B, et al. Multiplex Single-Molecule Kinetics of Nanopore-Coupled Polymerases. ACS Nano, 2021, 15(1): 489-502. doi:10.1021/acsnano.0c05226.
pmid: 33370106 |
[47] | Morrison GA, Fu J, Lee GC, et al. Nanopore Sequencing of the Fungal Intergenic Spacer Sequence as a Potential Rapid Diagnostic Assay. J Clin Microbiol, 2020, 58(12): e01972-20. doi:10.1128/jcm.01972-20. |
[48] | Gliddon HD, Frampton D, Munsamy V, et al. A Rapid Drug Resistance Genotyping Workflow for Mycobacterium tuberculosis, Using Targeted Isothermal Amplification and Nanopore Sequencing. Microbiol Spectr, 2021, 9(3): e0061021. doi:10.1128/Spectrum.00610-21. |
[49] |
Sahlin K, Medvedev P. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. Nat Commun, 2021, 12(1): 2. doi:10.1038/s41467-020-20340-8.
pmid: 33397972 |
[50] | Oxford Nanopore. NCM 2020 conference release: 99.1% single sequence accuracy, new record of Prometh ION sequencing 10 Tb data[EB/OL]. [2024-01-26]. https://nanoporetech.net/news_articles/untitled-entry-2021-01-07-at-13-53-50. |
[51] |
Gunter HM, Youlten SE, Madala BS, et al. Library adaptors with integrated reference controls improve the accuracy and reliability of nanopore sequencing. Nat Commun, 2022, 13(1): 6437. doi:10.1038/s41467-022-34028-8.
pmid: 36307482 |
[52] | 张睿, 刘艳萍, 钱军, 等. 基于全基因组测序结核分枝杆菌宿主内异质性的鉴定及其研究进展. 中国防痨杂志, 2022, 44(11): 1199-1204. doi:10.19982/j.issn.1000-6621.20220250. |
[53] | Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019, 11(1): 45. doi:10.1186/s13073-019-0660-8. |
[54] | Dheda K, Lenders L, Magombedze G, et al. Drug-Penetration Gradients Associated with Acquired Drug Resistance in Patients with Tuberculosis. Am J Respir Crit Care Med, 2018, 198(9): 1208-1219. doi:10.1164/rccm.201711-2333OC. |
[55] |
Kargarpour Kamakoli M, Sadegh HR, Farmanfarmaei G, et al. Evaluation of the impact of polyclonal infection and heteroresistance on treatment of tuberculosis patients. Sci Rep, 2017, 7: 41410. doi:10.1038/srep41410.
pmid: 28120910 |
[56] | 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础学组和临床学组. 结核分枝杆菌耐药性检测专家共识. 中国防痨杂志, 2019, 41(2): 129-137. doi:10.3969/j.issn.1000-6621.2019.02.003. |
[57] | Jouet A, Gaudin C, Badalato N, et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J, 2021, 57(3): 2002338. doi:10.1183/13993003.02338-2020. |
[58] |
Gomez-Gonzalez PJ, Andreu N, Phelan JE, et al. An integrated whole genome analysis of Mycobacterium tuberculosis reveals insights into relationship between its genome, transcriptome and methylome. Sci Rep, 2019, 9(1): 5204. doi:10.1038/s41598-019-41692-2.
pmid: 30914757 |
[59] |
Phelan J, De Sessions PF, Tientcheu L, et al. Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally. Sci Rep, 2018, 8(1): 160. doi:10.1038/s41598-017-18188-y.
pmid: 29317751 |
[60] |
Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods, 2017, 14(4): 407-410. doi:10.1038/nmeth.4184.
pmid: 28218898 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[6] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[7] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[8] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[9] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[10] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[11] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[12] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[13] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[14] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[15] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||