Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (5): 584-589.doi: 10.19982/j.issn.1000-6621.20240079
• Review Articles • Previous Articles Next Articles
Duan Shujuan1,2, Wang Wei2, Pang Yu2(), Li Ling1(
)
Received:
2024-03-04
Online:
2024-05-10
Published:
2024-04-29
Contact:
Li Ling, Email: Supported by:
CLC Number:
Duan Shujuan, Wang Wei, Pang Yu, Li Ling. Research progress on the regulation of host anti-tuberculosis effect by tyrosine kinase inhibitors[J]. Chinese Journal of Antituberculosis, 2024, 46(5): 584-589. doi: 10.19982/j.issn.1000-6621.20240079
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240079
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | 虞翔, 吴叶鉴, 冀磊. 宿主导向的抗菌和抗病毒治疗. 国外医药抗生素分册, 2018, 39(6): 507-521. doi:10.13461/j.cnki.wna.005152. |
[3] |
Paik S, Kim JK, Chung C, et al. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence, 2019, 10(1): 448-459. doi:10.1080/21505594.2018.1536598.
pmid: 30322337 |
[4] | Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens, 2022, 11(11): 1291. doi:10.3390/pathogens11111291. |
[5] |
Kilinç G, Saris A, Ottenhoff THM, et al. Host-directed therapy to combat mycobacterial infections. Immunol Rev, 2021, 301(1): 62-83. doi:10.1111/imr.12951.
pmid: 33565103 |
[6] | Hu Y, Wen Z, Liu S, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect, 2020, 80(6): e19-e26. doi:10.1016/j.jinf.2020.03.003. |
[7] | 董雪迎, 梁凯, 叶克应, 等. 受体酪氨酸激酶对自噬的调控及其研究进展. 中国生物工程杂志, 2021, 41(5): 72-78. doi:10.13523/j.cb.2012041. |
[8] |
Jiao Q, Bi L, Ren Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer, 2018, 17(1): 36. doi:10.1186/s12943-018-0801-5.
pmid: 29455664 |
[9] | 张迎秋, 刘书言, 刘晗. 受体酪氨酸激酶ErbB2靶向治疗策略和内吞降解调控的研究进展. 中国科学: 生命科学, 2021, 51(12): 1668-1680. doi:10.1360/SSV-2021-0410. |
[10] |
Cortese M, Kumar A, Matula P, et al. Reciprocal Effects of Fibroblast Growth Factor Receptor Signaling on Dengue Virus Replication and Virion Production. Cell Rep, 2019, 27(9): 2579-2592.e6. doi:10.1016/j.celrep.2019.04.105.
pmid: 31141684 |
[11] |
Tavares NC, Gava SG, Torres GP, et al. Schistosoma mansoni FES Tyrosine Kinase Involvement in the Mammalian Schistosomiasis Outcome and Miracidia Infection Capability in Biomphalaria glabrata. Front Microbiol, 2020, 11: 963. doi:10.3389/fmicb.2020.00963.
pmid: 32595609 |
[12] | Rodríguez-Mora S, Spivak AM, Szaniawski MA, et al. Tyrosine Kinase Inhibition: a New Perspective in the Fight against HIV. Curr HIV/AIDS Rep, 2019, 16(5): 414-422. doi:10.1007/s11904-019-00462-5. |
[13] | Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol, 2013, 5(8): a009043. doi:10.1101/cshperspect.a009043. |
[14] |
Neben CL, Lo M, Jura N, et al. Feedback regulation of RTK signaling in development. Dev Biol, 2019, 447(1): 71-89. doi:10.1016/j.ydbio.2017.10.017.
pmid: 29079424 |
[15] | Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, et al. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol, 2020, 36: 101510. doi:10.1016/j.redox.2020.101510. |
[16] | Critchley WR, Pellet-Many C, Ringham-Terry B, et al. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells, 2018, 7(3): 22. doi:10.3390/cells7030022. |
[17] | Carter JL, Hege K, Yang J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther, 2020, 5(1): 288. doi:10.1038/s41392-020-00361-x. |
[18] | Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188495. doi:10.1016/j.bbcan.2020.188495. |
[19] | Margiotta A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal. Int J Mol Sci, 2021, 22(12): 6342. doi:10.3390/ijms22126342. |
[20] |
Saraon P, Pathmanathan S, Snider J, et al. Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40(24): 4079-4093. doi:10.1038/s41388-021-01841-2.
pmid: 34079087 |
[21] | Sudhesh Dev S, Zainal Abidin SA, Farghadani R, et al. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol, 2021, 12: 772510. doi:10.3389/fphar.2021.772510. |
[22] | Azad T, Rezaei R, Surendran A, et al. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel), 2020, 12(8): 2042. doi:10.3390/cancers12082042. |
[23] |
Wang X, Li W, Zhang N, et al. Opportunities and challenges of co-targeting epidermal growth factor receptor and autophagy signaling in non-small cell lung cancer. Oncol Lett, 2019, 18(1): 499-506. doi:10.3892/ol.2019.10372.
pmid: 31289521 |
[24] | Liu S, Liao Y, Chen B, et al. Critical role of Syk-dependent STAT1 activation in innate antiviral immunity. Cell Rep, 2021, 34(3): 108627. doi:10.1016/j.celrep.2020.108627. |
[25] | Bermejo M, López-Huertas MR, García-Pérez J, et al. Dasatinib inhibits HIV-1 replication through the interference of SAMHD1 phosphorylation in CD4+ T cells. Biochem Pharmacol, 2016, 106: 30-45. doi:10.1016/j.bcp.2016.02.002. |
[26] | 张其程, 徐克. 自噬在EGFR-TKI类肿瘤靶向药物对肺癌的治疗和耐药中作用的研究进展. 中国肺癌杂志, 2016, 19(9): 607-614. doi:10.3779/j.issn.1009-3419.2016.09.09. |
[27] |
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7): 1117-1134. doi:10.1016/j.cell.2010.06.011.
pmid: 20602996 |
[28] |
Botti J, Djavaheri-Mergny M, Pilatte Y, et al. Autophagy signaling and the cogwheels of cancer. Autophagy, 2006, 2(2): 67-73. doi:10.4161/auto.2.2.2458.
pmid: 16874041 |
[29] |
Wei Y, Zou Z, Becker N, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 2013, 154(6): 1269-1284. doi:10.1016/j.cell.2013.08.015.
pmid: 24034250 |
[30] | Mukherjee T, Bhatt B, Prakhar P, et al. Epigenetic reader BRD 4 supports mycobacterial pathogenesis by co-modulating host lipophagy and angiogenesis. Autophagy, 2022, 18(2): 391-408. doi:10.1080/15548627.2021.1936355. |
[31] | Sogi KM, Lien KA, Johnson JR, et al. The Tyrosine Kinase Inhibitor Gefitinib Restricts Mycobacterium tuberculosis Growth through Increased Lysosomal Biogenesis and Modulation of Cytokine Signaling. ACS Infect Dis, 2017, 3(8): 564-574. doi:10.1021/acsinfecdis.7b00046. |
[32] | Salisbury TB, Tomblin JK. Insulin/Insulin-like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms, and new blocking strategies. Front Endocrinol (Lausanne), 2015, 6: 12. doi:10.3389/fendo.2015.00012. |
[33] | De Martino MC, van Koetsveld PM, Feelders RA, et al. IGF and mTOR pathway expression and in vitro effects of linsitinib and mTOR inhibitors in adrenocortical cancer. Endocrine, 2019, 64(3): 673-684. doi:10.1007/s12020-019-01869-1. |
[34] |
Rodrigues Alves APN, Fernandes JC, Fenerich BA, et al. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Lett, 2019, 456: 59-68. doi:10.1016/j.canlet.2019.04.030.
pmid: 31042587 |
[35] | Wang H, Bi J, Zhang Y, et al. Human Kinase IGF1R/IR Inhibitor Linsitinib Controls the In Vitro and Intracellular Growth of Mycobacterium tuberculosis. ACS Infect Dis, 2022, 8(10): 2019-2027. doi:10.1021/acsinfecdis.2c00278. |
[36] |
Woodring PJ, Litwack ED, O’Leary DD, et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J Cell Biol, 2002, 156(5): 879-892. doi:10.1083/jcb.200110014.
pmid: 11864995 |
[37] |
Appel S, Rupf A, Weck MM, et al. Effects of imatinib on monocyte-derived dendritic cells are mediated by inhibition of nuclear factor-kappaB and Akt signaling pathways. Clin Cancer Res, 2005, 11(5): 1928-1940. doi:10.1158/1078-0432.CCR-04-1713.
pmid: 15756019 |
[38] | Bruns H, Stegelmann F, Fabri M, et al. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J Immunol, 2012, 189(8): 4069-4078. doi:10.4049/jimmunol.1201538. |
[39] | Kuijl C, Savage ND, Marsman M, et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 2007, 450(7170): 725-730. doi:10.1038/nature06345. |
[40] | Hussain T, Zhao D, Shah SZA, et al. Nilotinib: A Tyrosine Kinase Inhibitor Mediates Resistance to Intracellular Mycobacterium Via Regulating Autophagy. Cells, 2019, 8(5): 506. doi:10.3390/cells8050506. |
[41] | Purcaru OS, Artene SA, Barcan E, et al. The Interference between SARS-CoV-2 and Tyrosine Kinase Receptor Signaling in Cancer. Int J Mol Sci, 2021, 22(9): 4830. doi:10.3390/ijms22094830. |
[42] |
Colado A, Genoula M, Cougoule C, et al. Effect of the BTK inhibitor ibrutinib on macrophage- and γδ T cell-mediated response against Mycobacterium tuberculosis. Blood Cancer J, 2018, 8(11): 100. doi:10.1038/s41408-018-0136-x.
pmid: 30397191 |
[43] | Sun FD, Wang PC, Shang J, et al. Ibrutinib presents antitumor activity in skin cancer and induces autophagy. Eur Rev Med Pharmacol Sci, 2018, 22(2): 561-566. doi:10.26355/eurrev_201801_14210. |
[44] |
Wang J, Liu X, Hong Y, et al. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma. J Exp Clin Cancer Res, 2017, 36(1): 96. doi:10.1186/s13046-017-0549-6.
pmid: 28716053 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||