Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (5): 590-595.doi: 10.19982/j.issn.1000-6621.20240086
• Review Articles • Previous Articles Next Articles
Yang Jing1, Xiao Lijuan2, Fang Tanwei2()
Received:
2024-03-07
Online:
2024-05-10
Published:
2024-04-29
Contact:
Fang Tanwei, Email: Supported by:
CLC Number:
Yang Jing, Xiao Lijuan, Fang Tanwei. Development strategy and prospect of tuberculosis mRNA vaccines[J]. Chinese Journal of Antituberculosis, 2024, 46(5): 590-595. doi: 10.19982/j.issn.1000-6621.20240086
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240086
[1] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] | 陈伟, 孙慧娟, 赵雁林. 新时期我国结核病防治服务体系建设及展望. 结核与肺部疾病杂志, 2024, 5(2): 95-100. doi:10.19983/j.issn.2096-8493.2024025. |
[3] | Romano M, Squeglia F, Kramarska E, et al. A Structural View at Vaccine Development against M.tuberculosis. Cells, 2023, 12(2): 317. doi:10.3390/cells12020317. |
[4] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020, 20(3): e28-e37. doi:10.1016/S1473-3099(19)30625-5.
pmid: 32014117 |
[5] | Looney MM, Hatherill M, Musvosvi M, et al. Conference report: WHO meeting summary on mRNA-based tuberculosis vaccine development. Vaccine, 2023, 41(48): 7060-7066. doi:10.1016/j.vaccine.2023.10.026. |
[6] |
Rohner E, Yang R, Foo KS, et al. Unlocking the promise of mRNA therapeutics. Nat Biotechnol, 2022, 40(11): 1586-1600. doi:10.1038/s41587-022-01491-z.
pmid: 36329321 |
[7] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[8] |
Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247(4949 Pt 1): 1465-1468. doi:10.1126/science.1690918.
pmid: 1690918 |
[9] | 袁军鸿, 杨昭庆. mRNA疫苗的研究进展. 中国生物制品学杂志, 2022, 35(6): 734-739. |
[10] | Kon E, Elia U, Peer D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol, 2022, 73: 329-336. doi:10.1016/j.copbio.2021.09.016. |
[11] | Shahrear S, Islam ABMMK. Modeling of MT. P495, an mRNA-based vaccine against the phosphate-binding protein PstS1 of Mycobacterium tuberculosis. Mol Divers, 2023, 27(4): 1613-1632. doi:10.1007/s11030-022-10515-4. |
[12] |
Rosa SS, Prazeres DMF, Azevedo AM, et al. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 2021, 39(16): 2190-2200. doi:10.1016/j.vaccine.2021.03.038.
pmid: 33771389 |
[13] | 董文彬, 张雪梅, 陈一飞. mRNA疫苗核酸修饰与递送系统的发展历程与挑战. 中国医药工业杂志, 2023, 54(3): 304-311. doi:10.16522/j.cnki.cjph.2023.03.002. |
[14] | Pal R, Bisht MK, Mukhopadhyay S. Secretory proteins of Mycobacterium tuberculosis and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J, 2022, 289(14): 4146-4171. doi:10.1111/febs.16369. |
[15] |
Al-Attiyah R, Mustafa AS. Characterization of human cellular immune responses to novel Mycobacterium tuberculosis antigens encoded by genomic regions absent in Mycobacterium bovis BCG. Infect Immun, 2008, 76(9): 4190-4198. doi:10.1128/IAI.00199-08.
pmid: 18573897 |
[16] | Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther, 2023, 8 (1): 341. doi:10.1038/s41392-023-01561-x. |
[17] |
Xie C, Yao R, Xia X. The advances of adjuvants in mRNA vaccines. NPJ Vaccines, 2023, 8(1): 162. doi:10.1038/s41541-023-00760-5.
pmid: 37884526 |
[18] | 傅佳燕, 冯硕, 杜彬荷, 等. mRNA疗法的研究进展与挑战. 中国科学: 生命科学, 2023, 53(1): 30-49. |
[19] | Jamous YF, Alhomoud DA. The Safety and Effectiveness of mRNA Vaccines Against SARS-CoV-2. Cureus, 2023, 15(9): e45602. doi:10.7759/cureus.45602. |
[20] | 秦凤铭, 任宁, 成温玉, 等. 传染病mRNA疫苗的研究进展及应用. 生物工程学报, 2023, 39(10): 3966-3984. doi:10.13345/j.cjb.230273. |
[21] | Yang J, Zhu J, Sun J, et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol Ther Nucleic Acids, 2022, 30: 184-197. doi:10.1016/j.omtn.2022.09.010. |
[22] |
Yousefi Avarvand A, Khademi F, Tafaghodi M, et al. The roles of latency-associated antigens in tuberculosis vaccines. Indian J Tuberc, 2019, 66 (4): 487-491. doi:10.1016/j.ijtb.2019.04.012.
pmid: 31813436 |
[23] |
Zhu B, Dockrell HM, Ottenhoff THM, et al. Tuberculosis vaccines: Opportunities and challenges. Respirology, 2018, 23(4): 359-368. doi:10.1111/resp.13245.
pmid: 29341430 |
[24] |
Hia F, Takeuchi O. The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci, 2021, 78(5): 1909-1928. doi:10.1007/s00018-020-03685-7.
pmid: 33128106 |
[25] | Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol, 2018, 19(1): 20-30. doi:10.1038/nrm.2017.91. |
[26] | Lampson BC, Inouye S, Inouye M. msDNA of bacteria. Prog Nucleic Acid Res Mol Biol, 1991, 40: 1-24. doi:10.1016/s0079-6603(08)60838-7. |
[27] | To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov, 2021, 16(11): 1307-1317. doi:10.1080/17460441.2021.1935859. |
[28] |
Chaney JL, Clark PL. Roles for Synonymous Codon Usage in Protein Biogenesis. Annu Rev Biophys, 2015, 44: 143-166. doi:10.1146/annurev-biophys-060414-034333.
pmid: 25747594 |
[29] |
Gebre MS, Brito LA, Tostanoski LH, et al. Novel approaches for vaccine development. Cell, 2021, 184(6): 1589-1603. doi:10.1016/j.cell.2021.02.030.
pmid: 33740454 |
[30] | Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev, 2020, 154-155: 37-63. doi:10.1016/j.addr.2020.06.002. |
[31] | 苗佳颖, 陆伟. 应用于mRNA疫苗的非病毒载体递送系统研究进展. 药学进展, 2022, 46(2): 84-92. |
[32] | Picon MA, Wang L, Da Fonseca Ferreira A, et al. Extracellular Vesicles as Delivery Systems in Disease Therapy. Int J Mol Sci, 2023, 24(24): 17134. doi:10.3390/ijms242417134. |
[33] | 金盈圻, 王宗保, 王川. 衣原体mRNA疫苗的研发对策与展望. 中国人兽共患病学报, 2022, 38(4): 349-358. doi:10.3969/j.issn.1002-2694.2022.00.032. |
[34] | 夏敏, 杨晓岚, 杨鹏辉, 等. 结核分枝杆菌Ag85B-mRNA疫苗的体外合成及其免疫原性研究. 免疫学杂志, 2019, 35(5): 404-408. doi:10.13431/j.cnki.immunol.j.20190061. |
[35] | World Health Organization. TB Research Tracker. Geneva: World Health Organization, 2023. |
[36] | 健康报. 新型结核病疫苗,何时走进现实[EB/OL]. [2023-07-25]. https://www.thepaper.cn/newsDetail_forward_23978724. |
[37] | 高嘉淇, 赵献军, 华进联. mRNA疫苗在人和动物重大疫病防控中的研究进展. 生理学报, 2023, 75(5): 647-658. doi:10.13294/j.aps.2023.0058. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[5] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[9] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[13] | Sun Danyuchen, Liu Yuhong. Research progress on active case finding of tuberculosis in the elderly population: a literature review [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 96-101. |
[14] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[15] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||