Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (5): 538-548.doi: 10.19982/j.issn.1000-6621.20230427
• Original Articles • Previous Articles Next Articles
Sun Yuting, Quan Shuting, Sun Baixu, Tian Xue, Qi Hui, Jiao Weiwei, Shen Adong(), Sun Lin(
)
Received:
2023-11-28
Online:
2024-05-10
Published:
2024-04-29
Contact:
Sun Lin, Email: Supported by:
CLC Number:
Sun Yuting, Quan Shuting, Sun Baixu, Tian Xue, Qi Hui, Jiao Weiwei, Shen Adong, Sun Lin. Analysis of effects of lipoprotein Rv1411c on Mycobacterium tuberculosis lipid metabolism based on non-targeted lipomics[J]. Chinese Journal of Antituberculosis, 2024, 46(5): 538-548. doi: 10.19982/j.issn.1000-6621.20230427
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230427
引物名称 | 序列(5'-3') | 备注 |
---|---|---|
LFP | TTTTTTTTCCATAAATTGGACTCATTCGCCCGATGTT | 左臂上游引物 |
LRP | TTTTTTTTCCATTTCTTGGTCCTCGACCAGCGGCTTC | 左臂下游引物 |
RFP | TTTTTTTTCCATAGATTGGGATACCATCAACGGCCAGA | 右臂上游引物 |
RRP | TTTTTTTTCCATCTTTTGGAACGCTGCCGAGCTCCTG | 右臂下游引物 |
LYZFP | CTCAGGCAGCTTGTGCGTCTT | 敲除验证引物 |
LYZRP | GTGGACCTCGACGACCCTAG | 敲除验证引物 |
RYZFP | TGGATCTCTCCGGCTTCACC | 敲除验证引物 |
RYZRP | CAACCGAAGAACGCCACC | 敲除验证引物 |
培养时间 (d) | 吸光度值($\bar{x}±s$) | t值 | P值 | |
---|---|---|---|---|
H37Rv菌株 | ΔRv1411c菌株 | |||
3 | 0.269±0.087 | 0.240±0.054 | 0.492 | 0.648 |
6 | 0.527±0.098 | 0.585±0.025 | 0.983 | 0.381 |
9 | 0.718±0.072 | 0.707±0.015 | 0.252 | 0.814 |
12 | 0.859±0.086 | 0.898±0.073 | 0.607 | 0.577 |
15 | 1.014±0.074 | 1.037±0.056 | 0.437 | 0.685 |
18 | 1.175±0.073 | 1.219±0.028 | 0.969 | 0.387 |
21 | 1.243±0.055 | 1.270±0.037 | 0.711 | 0.516 |
24 | 1.314±0.060 | 1.350±0.054 | 0.772 | 0.483 |
27 | 1.341±0.056 | 1.370±0.050 | 0.666 | 0.542 |
趋势/脂质分子 | FC值 | log2(FC)值 | t值 | P值 | VIP值 | 趋势/脂质分子 | FC值 | log2(FC)值 | t值 | P值 | VIP值 |
---|---|---|---|---|---|---|---|---|---|---|---|
上调 | PE 40:6e | 0.44 | -1.19 | -3.43 | 0.006 | 2.01 | |||||
SM d40:0 | 3.19 | 1.67 | 5.87 | <0.001 | 2.41 | PC 30:0e | 0.55 | -0.86 | -3.38 | 0.007 | 2.00 |
FA 18:2 | 2.45 | 1.29 | 5.19 | <0.001 | 2.33 | TAG 52:6 | 0.67 | -0.59 | -3.20 | 0.010 | 1.94 |
PE 40:5e | 1.93 | 0.95 | 3.33 | 0.008 | 1.98 | DAG 39:6e | 0.62 | -0.68 | -3.06 | 0.012 | 1.90 |
PE 38:7e | 2.07 | 1.05 | 2.98 | 0.014 | 1.88 | PE 36:6e | 0.16 | -2.68 | -3.02 | 0.013 | 1.89 |
SM d34:0 | 1.66 | 0.73 | 2.96 | 0.014 | 1.87 | PC 38:6 | 0.66 | -0.59 | -3.00 | 0.013 | 1.88 |
FA 18:1 | 2.62 | 1.39 | 2.90 | 0.016 | 1.85 | PC 38:2 | 0.49 | -1.03 | -3.00 | 0.013 | 1.88 |
PC 36:5e | 3.00 | 1.59 | 2.70 | 0.022 | 1.77 | PC 32:2e | 0.52 | -0.95 | -2.83 | 0.018 | 1.82 |
PC 39:2e | 1.80 | 0.85 | 2.65 | 0.024 | 1.76 | DAG 36:1 | 0.50 | -0.99 | -2.74 | 0.021 | 1.79 |
PC 42:6 | 2.55 | 1.35 | 2.37 | 0.039 | 1.64 | PI 36:4 | 0.32 | -1.66 | -2.63 | 0.025 | 1.75 |
SM d36:1 | 1.80 | 0.85 | 2.34 | 0.041 | 1.63 | PC 36:3e | 0.50 | -0.99 | -2.48 | 0.033 | 1.69 |
TAG 56:6 | 1.60 | 0.67 | 2.36 | 0.040 | 1.63 | LPC 18:1e | 0.56 | -0.83 | -2.45 | 0.034 | 1.67 |
PC 40:3 | 2.06 | 1.04 | 2.31 | 0.044 | 1.61 | PE 34:2 | 0.42 | -1.24 | -2.38 | 0.039 | 1.64 |
下调 | PS 36:1 | 0.26 | -1.97 | -2.36 | 0.040 | 1.63 | |||||
PE 34:1 | 0.23 | -2.13 | -13.96 | <0.001 | 2.67 | PE 34:2e | 0.20 | -2.33 | -2.35 | 0.041 | 1.63 |
PC 32:1e | 0.48 | -1.07 | -7.18 | <0.001 | 2.50 | SM d40:1 | 0.42 | -1.25 | -2.34 | 0.042 | 1.62 |
PE 36:2 | 0.18 | -2.46 | -5.38 | <0.001 | 2.36 | LPE 20:5 | 0.43 | -1.21 | -2.31 | 0.043 | 1.61 |
PE 35:1 | 0.13 | -2.93 | -4.41 | 0.001 | 2.22 | PE 36:3e | 0.40 | -1.33 | -2.31 | 0.044 | 1.61 |
PE 35:2 | 0.45 | -1.16 | -4.20 | 0.002 | 2.18 | GM3 d42:1 | 0.15 | -2.74 | -2.28 | 0.046 | 1.60 |
[1] |
Chatterjee D. The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol, 1997, 1(4): 579-588. doi:10.1016/s1367-5931(97)80055-5.
pmid: 9667898 |
[2] | 孙丕梅. 结核分枝杆菌中的分枝菌酸. 中国防痨杂志, 2010, 32(7): 44-49. |
[3] |
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity-fighting with a double-edged sword. FEBS Letters, 2016, 590(21): 3800-3819. doi:10.1002/1873-3468.12273.
pmid: 27350117 |
[4] |
Sander P, Rezwan M, Walker B, et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol Microbiol, 2004, 52(6): 1543-1552. doi:10.1111/j.1365-2958.2004.04041.x.
pmid: 15186407 |
[5] | Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685): 537-544. doi:10.1038/31159. |
[6] |
Post FA, Manca C, Neyrolles O, et al. Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits Mycobacterium smegmatis-induced cytokine production by human macrophages in vitro. Infect Immun, 2001, 69(3): 1433-1439. doi:10.1128/iai.69.3.1433-1439.2001.
pmid: 11179309 |
[7] |
Fulton SA, Reba SM, Pai RK, et al. Inhibition of major histocompatibility complex Ⅱ expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein. Infect Immun, 2004, 72(4): 2101-2110. doi:10.1128/iai.72.4.2101-2110.2004.
pmid: 15039332 |
[8] | Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A, 2008, 105(11): 4376-4380. doi:10.1073/pnas.0711159105. |
[9] | Miner MD, Chang JC, Pandey AK, et al. Role of cholesterol in Mycobacterium tuberculosis infection. Indian J Exp Biol, 2009, 47(6): 407-411. |
[10] |
Sulzenbacher G, Canaan S, Bordat Y, et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocero-sates to the surface of Mycobacterium tuberculosis. EMBO J, 2006, 25(7): 1436-1444. doi:10.1038/sj.emboj.7601048.
pmid: 16541102 |
[11] | Bigi F, Gioffré A, Klepp L, et al. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect, 2004, 6(2): 182-187. doi:10.1016/j.micinf.2003.10.010. |
[12] | Bigi F, Espitia C, Alito A, et al. A novel 27 kDa lipoprotein antigen from Mycobacterium bovis. Microbiology (Reading), 1997, 143 (Pt 11): 3599-3605. doi:10.1099/00221287-143-11-3599. |
[13] | Gaur RL, Ren K, Blumenthal A, et al. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog, 2014, 10(9): e1004376. doi:10.1371/journal.ppat.1004376. |
[14] | Shukla S, Richardson ET, Athman JJ, et al. Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog, 2014, 10(10): e1004471. doi:10.1371/journal.ppat.1004471. |
[15] | Drage MG, Tsai HC, Pecora ND, et al. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol, 2010, 17(9): 1088-1095. doi:10.1038/nsmb.1869. |
[16] | Martinot AJ, Farrow M, Bai L, et al. Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathog, 2016, 12(1): e1005351. doi:10.1371/journal.ppat.1005351. |
[17] | Li J, Luu LDW, Wang X, et al. Metabolomic analysis reveals potential biomarkers and the underlying pathogenesis involved in Mycoplasma pneumoniae pneumonia. Emerg Microbes Infect, 2022, 11(1): 593-605. doi:10.1080/22221751.2022.2036582. |
[18] | Zhai W, Wu F, Zhang Y, et al. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci, 2019, 20(2): 340. doi:10.3390/ijms20020340. |
[19] | Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol, 2020, 11: 1230. doi:10.3389/fimmu.2020.01230. |
[20] | Kang PB, Azad AK, Torrelles JB, et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med, 2005, 202(7): 987-999. doi:10.1084/jem.20051239. |
[21] | Quigley J, Hughitt VK, Velikovsky CA, et al. The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio, 2017, 8(2): e00148-17. doi:10.1128/mBio.00148-17. |
[22] |
Gago G, Diacovich L, Gramajo H. Lipid metabolism and its implication in mycobacteria-host interaction. Curr Opin Microbiol, 2018, 41: 36-42. doi:10.1016/j.mib.2017.11.020.
pmid: 29190491 |
[23] | Neyrolles O, Guilhot C. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb), 2011, 91(3): 187-195. doi:10.1016/j.tube.2011.01.002. |
[24] |
Cook GM, Greening C, Hards K, et al. Energetics of pathogenic bacteria and opportunities for drug development. Adv Microb Physiol, 2014, 65: 1-62. doi:10.1016/bs.ampbs.2014.08.001.
pmid: 25476763 |
[25] | Daniel J, Maamar H, Deb C, et al. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog, 2011, 7(6): e1002093. doi:10.1371/journal.ppat.1002093. |
[26] | Lee W, VanderVen BC, Fahey RJ, et al. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem, 2013, 288(10): 6788-6800. doi:10.1074/jbc.M112.445056. |
[27] | Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol, 2021, 12: 775326. doi:10.3389/fimmu.2021.775326. |
[28] | Trivedi OA, Arora P, Sridharan V, et al. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature, 2004, 428(6981): 441-445. doi:10.1038/nature02384. |
[29] | Baran M, Grimes KD, Sibbald PA, et al. Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis. J Med Chem, 2020, 201: 112408. doi:10.1016/j.ejmech.2020.112408. |
[30] | Pitarque S, Larrouy-Maumus G, Payré B, et al. The immunomodulatory lipoglycans, lipoar-abinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb), 2008, 88(6): 560-565. doi:10.1016/j.tube.2008.04.002. |
[31] |
Fischer K, Chatterjee D, Torrelles J, et al. Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J Immunol, 2001, 167(4): 2187-2192. doi:10.4049/jimmunol.167.4.2187.
pmid: 11490004 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||