Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (8): 744-751.doi: 10.19982/j.issn.1000-6621.20230105
• Original Articles • Previous Articles Next Articles
Zhao Yong1(), Liang Lili2, Jiang Nan3
Received:
2023-03-30
Online:
2023-08-10
Published:
2023-08-09
Contact:
Zhao Yong
E-mail:zhaoyongjh@163.com
Supported by:
CLC Number:
Zhao Yong, Liang Lili, Jiang Nan. Impact of targeted regulation of miR-144-3p by LncRNA GAS5 on macrophage apoptosis and inflammatory response in Mycobacterium tuberculosis infected macrophages[J]. Chinese Journal of Antituberculosis, 2023, 45(8): 744-751. doi: 10.19982/j.issn.1000-6621.20230105
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230105
分组 | LncRNA GAS5 | miR-144-3p |
---|---|---|
NC组 | 1.00±0.00 | 1.00±0.00 |
MTB组 | 0.22±0.02a | 2.46±0.13a |
MTB+pcDNA组 | 0.23±0.01 | 2.48±0.14 |
MTB+pcDNA-GAS5组 | 0.86±0.07bc | 1.35±0.10bc |
MTB+inhibitor NC组 | 0.24±0.02 | 2.47±0.12 |
MTB+miR-144-3p inhibitor组 | 0.23±0.01 | 1.21±0.09be |
MTB+pcDNA-GAS5+mimic NC组 | 0.87±0.08 | 1.36±0.11 |
MTB+pcDNA-GAS5+miR-144-3p mimic组 | 0.88±0.07 | 1.89±0.14df |
F值 | 365.816 | 186.249 |
P值 | <0.001 | <0.001 |
分组 | IFN-γ | IL-6 | TNF-α |
---|---|---|---|
NC组 | 35.58±1.23 | 25.46±1.18 | 51.12±2.03 |
MTB组 | 212.26±9.65a | 123.35±5.12a | 325.58±12.28a |
MTB+pcDNA组 | 210.63±9.78 | 125.52±4.86 | 327.73±10.15 |
MTB+pcDNA-GAS5组 | 96.63±4.17bc | 41.93±2.19bc | 118.85±6.03bc |
MTB+inhibitor NC组 | 214.45±10.03 | 126.05±4.77 | 326.69±8.33 |
MTB+miR-144-3p inhibitor组 | 103.36±5.11be | 39.95±1.62be | 120.26±6.67be |
MTB+pcDNA-GAS5+mimic NC组 | 95.51±4.16 | 40.95±2.05 | 116.64±5.84 |
MTB+pcDNA-GAS5+miR-144-3p mimic组 | 152.26±6.78df | 85.53±4.11df | 249.92±10.05df |
F值 | 551.964 | 905.404 | 1167.700 |
P值 | <0.001 | <0.001 | <0.001 |
分组 | A450值 | 细胞凋亡率(%) |
---|---|---|
NC组 | 0.86±0.07 | 9.79±0.23 |
MTB组 | 1.45±0.14a | 3.84±0.24a |
MTB+pcDNA组 | 1.44±0.13 | 3.82±0.21 |
MTB+pcDNA-GAS5组 | 0.96±0.08bc | 7.62±0.17bc |
MTB+inhibitor NC组 | 1.46±0.12 | 3.86±0.22 |
MTB+miR-144-3p inhibitor组 | 0.92±0.08be | 7.51±0.19be |
MTB+pcDNA-GAS5+mimic NC组 | 0.97±0.08 | 7.66±0.13 |
MTB+pcDNA-GAS5+miR-144-3p mimic组 | 1.25±0.13df | 5.46±0.16df |
F值 | 36.128 | 795.234 |
P值 | <0.001 | <0.001 |
分组 | Bax/GAPDH | Bcl-2/GAPDH |
---|---|---|
NC组 | 1.21±0.12 | 0.56±0.05 |
MTB组 | 0.22±0.02a | 1.53±0.15a |
MTB+pcDNA组 | 0.23±0.01 | 1.54±0.14 |
MTB+pcDNA-GAS5组 | 0.94±0.08bc | 0.81±0.07bc |
MTB+inhibitor NC组 | 0.24±0.02 | 1.54±0.12 |
MTB+miR-144-3p inhibitor组 | 0.89±0.08be | 0.78±0.07be |
MTB+pcDNA-GAS5+mimic NC组 | 0.96±0.07 | 0.79±0.07 |
MTB+pcDNA-GAS5+miR-144-3p mimic组 | 0.58±0.05df | 1.08±0.11df |
F值 | 209.594 | 91.356 |
P值 | <0.001 | <0.001 |
[1] |
Fu Y, Shen J, Liu F, et al. Andrographolide Suppresses Pyroptosis in Mycobacterium tuberculosis-Infected Macrophages via the microRNA-155/Nrf2 Axis. Oxid Med Cell Longev, 2022, 2022:1885066. doi:10.1155/2022/1885066.
doi: 10.1155/2022/1885066 |
[2] |
Marks GB, Nguyen NV, Nguyen PTB, et al. Community-wide screening for tuberculosis in a high-prevalence setting. N Engl J Med, 2019, 381(14):1347-1357. doi:10.1056/NEJMoa1902129.
doi: 10.1056/NEJMoa1902129 URL |
[3] |
刘冬梅, 彭少君, 韩晓群, 等. STAT1在PPARγ活化后抑制结核分枝杆菌感染巨噬细胞炎症反应中的作用. 免疫学杂志, 2022, 38(9):768-774. doi:10.13431/j.cnki.immunol.j.20220107.
doi: 10.13431/j.cnki.immunol.j.20220107 |
[4] |
Li Y, Sun L, Liu J, et al. Down-regulation of GAS5 has diagnostic value for tuberculosis and regulates the inflammatory response in Mycobacterium tuberculosis infected THP-1 cells. Tuberculosis (Edinb), 2022, 132:102141. doi:10.1016/j.tube.2021.102141.
doi: 10.1016/j.tube.2021.102141 URL |
[5] |
Looney M, Lorenc R, Halushka MK, et al. Key macrophage responses to infection with Mycobacterium tuberculosis are co-regulated by microRNAs and DNA methylation. Front Immunol, 2021, 12:685237. doi:10.3389/fimmu.2021.685237.
doi: 10.3389/fimmu.2021.685237 |
[6] |
Guo L, Zhou L, Gao Q, et al. MicroRNA-144-3p inhibits autophagy activation and enhances Bacillus Calmette-Guérin infection by targeting ATG4a in RAW264.7 macrophage cells. PLoS One, 2017, 12(6):e0179772. doi:10.1371/journal.pone.0179772.
doi: 10.1371/journal.pone.0179772 |
[7] |
Ji Q, Qiao X, Liu Y, et al. Expression of long-chain nonco-ding RNA GAS 5 in osteoarthritis and its effect on apoptosis and autophagy of osteoarthritis chondrocytes. Histol Histopathol, 2021, 36(4):475-484. doi:10.14670/HH-18-312.
doi: 10.14670/HH-18-312 |
[8] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断. 2017-11-09. |
[9] |
杨盛娅, 孙亚萍, 刘立宾, 等. miR-150调控PDCD4对结核分枝杆菌H37Rv感染THP-1巨噬细胞的影响. 中国免疫学杂志, 2021, 37(5):547-552,563. doi:10.3969/j.issn.1000-484X.2021.05.007.
doi: 10.3969/j.issn.1000-484X.2021.05.007 |
[10] |
Sun W, Zhang X, He X, et al. Long non-coding RNA SNHG 16 silencing inhibits proliferation and inflammation in Mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. Infect Genet Evol, 2022, 103:105325. doi:10.1016/j.meegid.2022.105325.
doi: 10.1016/j.meegid.2022.105325 URL |
[11] |
Pattanaik KP, Ganguli G, Naik SK, et al. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol, 2021, 130:133-141. doi:10.1016/j.molimm.2020.11.020.
doi: 10.1016/j.molimm.2020.11.020 pmid: 33419561 |
[12] |
宋蔷, 周康仕, 李典芬, 等. 结核分枝杆菌诱导的人肺泡巨噬细胞对IFN-γ反应性的改变及机制研究. 医学理论与实践, 2017, 30(12):1730-1732. doi:10.19381/j.issn.1001-7585.2017.12.006.
doi: 10.19381/j.issn.1001-7585.2017.12.006 |
[13] |
Sousa J, Cá B, Maceiras AR, et al. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun, 2020, 11(1):1949-1962. doi:10.1038/s41467-020-15832-6.
doi: 10.1038/s41467-020-15832-6 |
[14] |
Yao Q, Xie Y, Xu D, et al. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol, 2022, 19(8):883-897. doi:10.1038/s41423-022-00878-x.
doi: 10.1038/s41423-022-00878-x |
[15] |
唐才环, 薛芳, 陈乙云, 等. 肺炎支原体肺炎患儿血清中lncRNA MALAT1和lncRNA GAS5表达与病情严重程度及预后的相关性分析. 中国病原生物学杂志, 2022, 17(10):1199-1203. doi:10.13350/j.cjpb.221018.
doi: 10.13350/j.cjpb.221018 |
[16] |
张丛敏, 刘颖, 刘静, 等. HBV宫内感染孕妇血清LncRNA GAS5、ZEB1的表达及其临床意义. 中国病案, 2021, 22(9):97-101. doi:10.3969/j.issn.1672-2566.2021.09.034.
doi: 10.3969/j.issn.1672-2566.2021.09.034 |
[17] |
Zeng Z, Lan Y, Chen Y, et al. LncRNA GAS5 suppresses inflammatory responses by inhibiting HMGB1 release via miR-155-5p/SIRT1 axis in sepsis. Eur J Pharmacol, 2023, 942(1):175520. doi:10.1016/j.ejphar.2023.175520.
doi: 10.1016/j.ejphar.2023.175520 |
[18] |
Yang L, Zhang X, Liu X. Long noncoding RNA GAS5 protects against Mycoplasma pneumoniae pneumonia by regulating the microRNA2223p/TIMP3 axis. Mol Med Rep, 2021, 23(5):380. doi:10.3892/mmr.2021.12019.
doi: 10.3892/mmr.2021.12019 |
[19] |
Zhao Y, Yuan D, Zhu D, et al. LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425-5p. J Ovarian Res, 2021, 14(1):109-119. doi:10.1186/s13048-021-00857-2.
doi: 10.1186/s13048-021-00857-2 pmid: 34454554 |
[20] |
Lv Y, Guo S, Li XG, et al. Sputum and serum microRNA-144 levels in patients with tuberculosis before and after treatment. Int J Infect Dis, 2016, 43(1):68-73. doi:10.1016/j.ijid.2015.12.014.
doi: 10.1016/j.ijid.2015.12.014 URL |
[21] | 彭乐, 李萌, 席向宇. miR-144调控Atg4a在巨噬细胞清除结核分枝杆菌中的作用研究. 预防医学情报杂志, 2020, 36(12):1621-1628. |
[22] |
张立营, 陈朴, 高鹏, 等. 活动期肺结核外周血mir-144的表达水平及意义. 医学研究杂志, 2017, 46(1):151-154. doi:10.11969/j.issn.1673-548X.2017.01.040.
doi: 10.11969/j.issn.1673-548X.2017.01.040 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||