Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (10): 1085-1090.doi: 10.19982/j.issn.1000-6621.20220127
• Review Articles • Previous Articles Next Articles
Received:
2022-04-24
Online:
2022-10-10
Published:
2022-09-30
Contact:
Liang Jianqin
E-mail:ljqbj309@163.com
CLC Number:
Liu Qi, Liang Jianqin. Research progress of programmed cell death protein 1/programmed cell death ligands signaling pathway in immune regulation of tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(10): 1085-1090. doi: 10.19982/j.issn.1000-6621.20220127
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220127
[1] | World Health Organization. Global tuberculosis report 2021, Geneva: World Health Organization, 2021. |
[2] |
Mi J, Liang Y, Liang J, et al. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol, 2021, 11:763591. doi: 10.3389/fcimb.2021.763591.
doi: 10.3389/fcimb.2021.763591 URL |
[3] |
Mocan T, Sparchez Z, Craciun R, et al. Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol, 2019, 21(6):702-712. doi: 10.1007/s12094-018-1975-4.
doi: 10.1007/s12094-018-1975-4 pmid: 30387047 |
[4] |
Jiang Y, Chen M, Nie H, et al. PD-1 and PD-L 1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother, 2019, 15(5):1111-1122. doi: 10.1080/21645515.2019.1571892.
doi: 10.1080/21645515.2019.1571892 URL |
[5] | Han Y, Liu D, Li L. PD-1/PD-L 1 pathway: current researches in cancer. Am J Cancer Res, 2020, 10(3):727-742. |
[6] |
潘佳佳, 贾晓青, 黄岗, 等. PD-1/PD-Ls 信号通路及其抗体在肿瘤治疗中的应用. 中国药科大学学报, 2016, 47(1):9-18. doi: 10.11665/j.issn.1000-5048.20160102.
doi: 10.11665/j.issn.1000-5048.20160102 |
[7] |
Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med, 2016, 375(18):1767-1778. doi: 10.1056/NEJMra1514296.
doi: 10.1056/NEJMra1514296 URL |
[8] |
Zak KM, Grudnik P, Magiera K, et al. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2. Structure, 2017, 25(8):1163-1174. doi: 10.1016/j.str.2017.06.011.
doi: S0969-2126(17)30191-0 pmid: 28768162 |
[9] |
Khan M, Arooj S, Wang H. Soluble B7-CD28 Family Inhibitory Immune Checkpoint Proteins and Anti-Cancer Immunotherapy. Front Immunol, 2021, 12:651634. doi: 10.3389/fimmu.2021.651634.
doi: 10.3389/fimmu.2021.651634 URL |
[10] |
Intlekofer AM, Thompson CB. At the bench: preclinical ra-tionale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol, 2013, 94(1):25-39. doi: 10.1189/jlb.1212621.
doi: 10.1189/jlb.1212621 URL |
[11] |
Kono Y, Colley T, To M, et al. Cigarette smoke-induced impairment of autophagy in macrophages increases galectin-8 and inflammation. Sci Rep, 2021, 11(1):335. doi: 10.1038/s41598-020-79848-0.
doi: 10.1038/s41598-020-79848-0 pmid: 33432024 |
[12] |
Ganbat D, Seehase S, Richter E, et al. Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells. BMC Pulm Med, 2016, 16:19. doi: 10.1186/s12890-016-0185-5.
doi: 10.1186/s12890-016-0185-5 pmid: 26803467 |
[13] |
Hu JF, Zhang W, Zuo W, et al. Inhibition of the PD-1/PD-L1 signaling pathway enhances innate immune response of alveolar macrophages to mycobacterium tuberculosis in mice. Pulm Pharmacol Ther, 2020, 60(2):101842. doi: 10.1016/j.pupt.2019.101842.
doi: 10.1016/j.pupt.2019.101842 |
[14] |
Karim AF, Sande OJ, Tomechko SE, et al. Proteomics and Network Analyses Reveal Inhibition of Akt-mTOR Signaling in CD4+T Cells by Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan. Proteomics, 2017, 17(22):1700233. doi: 10.1002/pmic.201700233.
doi: 10.1002/pmic.201700233 URL |
[15] |
Matta SK, Kumar D. Hypoxia and classical activation limits Mycobacterium tuberculosis survival by Akt-dependent glycolytic shift in macrophages. Cell Death Discov, 2016, 2:16022. doi: 10.1038/cddiscovery.2016.22.
doi: 10.1038/cddiscovery.2016.22 pmid: 27551515 |
[16] |
Ruggiero SM, Pilvankar MR, Ford Versypt AN. Mathematical Modeling of Tuberculosis Granuloma Activation. Processes (Basel), 2017, 5(4):79. doi: 10.3390/pr5040079.
doi: 10.3390/pr5040079 |
[17] |
Wang X, Yang L, Huang F, et al. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett, 2017, 184:7-14. doi: 10.1016/j.imlet.2017.02.006.
doi: S0165-2478(16)30261-9 pmid: 28223102 |
[18] |
Dutta RK, Kathania M, Raje M, et al. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol, 2012, 44(6):942-954. doi: 10.1016/j.biocel.2012.02.021.
doi: 10.1016/j.biocel.2012.02.021 URL |
[19] |
Tateosian NL, Pellegrini JM, Amiano NO, et al. IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients wit active tuberculosis in association with the severity of the disease. Autophagy, 2017, 13(7):1191-1204. doi: 10.1080/15548627.2017.1320636.
doi: 10.1080/15548627.2017.1320636 pmid: 28581888 |
[20] |
Goyal N, Kashyap B, Kaur IR. Significance of IFN-γ/IL-2 Ratio as a Circulating Diagnostic Biomarker in Extrapulmonary Tuberculosis. Scand J Immunol, 2016, 83(5):338-344. doi: 10.1111/sji.12424.
doi: 10.1111/sji.12424 pmid: 26946082 |
[21] | 张雍容, 刘建, 王勇, 等. IL-2和GM-CSF免疫治疗耐多药结核病的研究. 中国科学:生命科学, 2012, 42(10):801-808. |
[22] |
Zhang Z, Zhang S, Zou Z, et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology, 2011, 53(1):73-85. doi: 10.1002/hep.23977.
doi: 10.1002/hep.23977 pmid: 21254163 |
[23] |
杨宇翔, 柯鹏, 曾洪波, 等. 初治肺结核患者强化治疗前后血清中IL-2、IL-4、IL-10、IFN-γ水平变化的临床意义研究. 数理医药学杂志, 2015, 28(3):334-335. doi: 10.3969/j.issn.1004-4337.2015.03.007.
doi: 10.3969/j.issn.1004-4337.2015.03.007 |
[24] |
Hu YM, Hsiung YC, Pai MH, et al. Glutamine Administration in Early or Late Septic Phase Downregulates Lymphocyte PD-1/PD-L 1 Expression and the Inflammatory Response in Mice With Polymicrobial Sepsis. J Parenter Enteral Nutr, 2018, 42(3):538-549. doi: 10.1177/0148607117695245.
doi: 10.1177/0148607117695245 |
[25] |
Wu X, Deng G, Li M, et al. Wnt/β-catenin signaling reduces Bacillus Calmette-Guerin-induced macrophage necrosis through a ROS-mediated PARP/AIF-dependent pathway. BMC Immunol, 2015, 16:16. doi: 10.1186/s12865-015-0080-5.
doi: 10.1186/s12865-015-0080-5 URL |
[26] |
Husain MA, Ishqi HM, Sarwar T, et al. Identification and expression analysis of alternatively spliced new transcript isoform of Bax gene in mouse. Gene, 2017, 621:21-31. doi: 10.1016/j.gene.2017.04.020.
doi: S0378-1119(17)30262-7 pmid: 28412457 |
[27] |
Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol, 2014, 15(1):49-63. doi: 10.1038/nrm3722.
doi: 10.1038/nrm3722 URL |
[28] |
Li X, Zeng Q, Xu F, et al. Progress in programmed cell death-1/programmed cell death-ligand 1 pathway inhibitors and binding mode analysis. Mol Divers, 2022. doi: 10.1007/s11030-022-10509-2.
doi: 10.1007/s11030-022-10509-2 |
[29] |
Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655):495-499. doi: 10.1038/nature22396.
doi: 10.1038/nature22396 URL |
[30] |
Ogishi M, Yang R, Aytekin C, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med, 2021, 27(9):1646-1654. doi: 10.1038/s41591-021-01388-5.
doi: 10.1038/s41591-021-01388-5 pmid: 34183838 |
[31] |
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol, 2019, 9:207. doi: 10.3389/fcimb.2019.00207.
doi: 10.3389/fcimb.2019.00207 URL |
[32] |
Guo AL, Zhao JF, Gao L, et al. HIV-1-Specific CD11c+ CD8+T Cells Display Low PD-1 Expression and Strong Anti-HIV-1 Activity. Front Immunol, 2021, 12:757457. doi: 10.3389/fimmu.2021.757457.
doi: 10.3389/fimmu.2021.757457 URL |
[33] |
Huang N, Zhou R, Chen H, et al. Splenic CD4+ and CD8+T-cells highly expressed PD-1 and Tim-3 in cirrhotic patients with HCV infection and portal hypertension. Int J Immunopathol Pharmacol, 2021, 35:20587384211061051. doi: 10.1177/20587384211061051.
doi: 10.1177/20587384211061051 |
[34] |
Christensen-Quick A, Massanella M, Frick A, et al. Subclinical Cytomegalovirus DNA Is Associated with CD 4 T Cell Activation and Impaired CD8 T Cell CD107a Expression in People Living with HIV despite Early Antiretroviral Therapy. J Virol, 2019, 93(13):e00179-19. doi: 10.1128/JVI.00179-19.
doi: 10.1128/JVI.00179-19 |
[35] |
Li J, Jin C, Wu C, et al. PD-1 modulating Mycobacterium tuberculosis-specific polarized effector memory T cells response in tuberculosis pleurisy. J Leukoc Biol, 2019, 106(3):733-747. doi: 10.1002/JLB.MA1118-450RR.
doi: 10.1002/JLB.MA1118-450RR URL |
[36] |
Day CL, Abrahams DA, Bunjun R, et al. PD-1 Expression on Mycobacterium tuberculosis-Specific CD 4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front Immunol, 2018, 9:1995. doi: 10.3389/fimmu.2018.01995.
doi: 10.3389/fimmu.2018.01995 URL |
[37] |
Singh A, Mohan A, Dey AB, et al. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis, 2013, 208(4):603-615. doi: 10.1093/infdis/jit206.
doi: 10.1093/infdis/jit206 pmid: 23661793 |
[38] |
Hassan SS, Akram M, King EC, et al. PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment. PLoS One, 2015, 10(9):e0137646. doi: 10.1371/journal.pone.0137646.
doi: 10.1371/journal.pone.0137646 |
[39] |
Stringari LL, Covre LP, da Silva FDC, et al. Increase of CD4+CD25highFoxP3+ cells impairs in vitro human microbicidal activity against Mycobacterium tuberculosis during latent and acute pulmonary tuberculosis. PLoS Negl Trop Dis, 2021, 15(7):e0009605. doi: 10.1371/journal.pntd.0009605.
doi: 10.1371/journal.pntd.0009605 URL |
[40] |
Mazerolles F, Rieux-Laucat F. PD-L1 is expressed on human activated naive effector CD4+ T cells. Regulation by dendritic cells and regulatory CD4+ T cells. PLoS One, 2021, 16(11):e0260206. doi: 10.1371/journal.pone.0260206.
doi: 10.1371/journal.pone.0260206 |
[41] |
Piao W, Li L, Saxena V, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun, 2022, 13(1):2176. doi: 10.1038/s41467-022-29930-0.
doi: 10.1038/s41467-022-29930-0 |
[42] |
Trinath J, Maddur MS, Kaveri SV, et al. Mycobacterium tuberculosis promotes regulatory T-cell expansion via induction of programmed death-1 ligand 1 (PD-L1, CD274) on dendritic cells. J Infect Dis, 2012, 205(4):694-696. doi: 10.1093/infdis/jir820.
doi: 10.1093/infdis/jir820 pmid: 22238465 |
[43] |
Shen L, Shi H, Gao Y, et al. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis. Tuberculosis(Edinb), 2016, 101:146-150. doi: 10.1016/j.tube.2016.10.001.
doi: 10.1016/j.tube.2016.10.001 |
[44] |
Yin W, Tong ZH, Cui A, et al. PD-1/PD-Ls pathways between CD4+ T cells and pleural mesothelial cells in human tuberculous pleurisy. Tuberculosis(Edinb),2014, 94(2):131-139. doi: 10.1016/j.tube.2013.10.007.
doi: 10.1016/j.tube.2013.10.007 |
[45] |
Van Damme-Ostapowicz K, Cybulski M, Kozakiewicz M, et al. Analysis of the Increase of Vascular Cell Adhesion Molecule-1 (VCAM-1) Expression and the Effect of Exposure in a Hyperbaric Chamber on VCAM-1 in Human Blood Serum: A Cross-Sectional Study. Medicina (Kaunas), 2022, 58(1):95. doi: 10.3390/medicina58010095.
doi: 10.3390/medicina58010095 |
[46] |
Fatehi Hassanabad A, Zarzycki AN, Jeon K, et al. Post-Operative Adhesions: A Comprehensive Review of Mechanisms. Biomedicines, 2021, 9(8):867. doi: 10.3390/biomedicines9080867.
doi: 10.3390/biomedicines9080867 URL |
[47] |
Negi K, Bhaskar A, Dwivedi VP. Progressive Host-Directed Strategies to Potentiate BCG Vaccination Against Tuberculosis. Front Immunol, 2022, 13:944183. doi: 10.3389/fimmu.2022.944183.
doi: 10.3389/fimmu.2022.944183 URL |
[48] |
Singh A, Mohan A, Dey AB, et al. Programmed death-1+T cells inhibit effector T cells at the pathological site of miliary tuberculosis. Clin Exp Immunol, 2017, 187(2):269-283. doi: 10.1111/cei.12871.
doi: 10.1111/cei.12871 pmid: 27665733 |
[49] |
Bandaru A, Devalraju KP, Paidipally P, et al. Phosphorylated STAT3 and PD-1 regulate IL-17 production and IL-23 receptor expression in Mycobacterium tuberculosis infection. Eur J Immunol, 2014, 44(7):2013-2024. doi: 10.1002/eji.201343680.
doi: 10.1002/eji.201343680 URL |
[50] |
孙萌萌, 秦川, 唐军, 等. 阻断巨噬细胞介导的PD1/PD-L1通路对小鼠结核复发的抑制作用. 中国比较医学杂志, 2018, 28(4):50-58. doi: 10.3969/j.issn.1671-7856.2018.04.009.
doi: 10.3969/j.issn.1671-7856.2018.04.009 |
[51] |
Singh A, Dey AB, Mohan A, et al. Programmed death-1 receptor suppresses γ-IFN producing NKT cells in human tuberculosis. Tuberculosis (Edinb),2014, 94(3):197-206. doi: 10.1016/j.tube.2014.01.005.
doi: 10.1016/j.tube.2014.01.005 URL |
[52] |
Zhang C, Wang F, Sun N, et al. The combination of novel immune checkpoints HHLA2 and ICOSLG: A new system to predict survival and immune features in esophageal squamous cell carcinoma. Genes Dis, 2020, 9(2):415-428. doi: 10.1016/j.gendis.2020.08.003.
doi: 10.1016/j.gendis.2020.08.003 |
[53] |
Arana Y, Gálvez RI, Jacobs T. Role of the PD-1/PD-L1 Pathway in Experimental Trypanosoma cruzi Infection and Potential Therapeutic Options. Front Immunol, 2022, 13:866120. doi: 10.3389/fimmu.2022.866120.
doi: 10.3389/fimmu.2022.866120 URL |
[54] |
Chen H, Zhou J, Zhao X, et al. Characterization of multiple soluble immune checkpoints in individuals with different Mycobacterium tuberculosis infection status and dynamic changes during anti-tuberculosis treatment. BMC Infect Dis, 2022, 22(1):543. doi: 10.1186/s12879-022-07506-z.
doi: 10.1186/s12879-022-07506-z URL |
[55] |
Pan SW, Shu CC, Huang JR, et al. PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis. Int J Mol Sci, 2022, 23(3):1619. doi: 10.3390/ijms23031619.
doi: 10.3390/ijms23031619 |
[56] |
Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9:e52668. doi: 10.7554/eLife.52668.
doi: 10.7554/eLife.52668 URL |
[57] |
Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs, 2019, 11(2):219-238. doi: 10.1080/19420862.2018.1556465.
doi: 10.1080/19420862.2018.1556465 pmid: 30516432 |
[58] |
Park DW, Kim YJ, Sung YK, et al. TNF inhibitors increase the risk of nontuberculous mycobacteria in patients with seropositive rheumatoid arthritis in a mycobacterium tuberculosis endemic area. Sci Rep, 2022, 12(1):4003. doi: 10.1038/s41598-022-07968-w.
doi: 10.1038/s41598-022-07968-w URL |
[59] |
Kawka M, Brzostek A, Dzitko K, et al. Mycobacterium tuberculosis Binds Human Serum Amyloid A, and the Interaction Modulates the Colonization of Human Macrophages and the Transcriptional Response of the Pathogen. Cells, 2021, 10(5):1264. doi: 10.3390/cells10051264.
doi: 10.3390/cells10051264 URL |
[60] |
Noguera-Julian A, Calzada-Hernández J, Brinkmann F, et al. Tuberculosis Disease in Children and Adolescents on Therapy With Antitumor Necrosis Factor-ɑ Agents: A Collaborative, Multicenter Paediatric Tuberculosis Network European Trials Group (ptbnet) Study. Clin Infect Dis, 2020, 71(10):2561-2569. doi: 10.1093/cid/ciz1138.
doi: 10.1093/cid/ciz1138 pmid: 31796965 |
[61] |
Carranza-Rosales P, Carranza-Torres IE, Guzmán-Delgado NE, et al. Modeling tuberculosis pathogenesis through ex vivo lung tissue infection. Tuberculosis (Edinb), 2017, 107:126-132. doi: 10.1016/j.tube.2017.09.002.
doi: 10.1016/j.tube.2017.09.002 URL |
[62] |
Luo Y, Xue Y, Mao L, et al. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4+T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front Immunol, 2021, 12:721013. doi: 10.3389/fimmu.2021.721013.
doi: 10.3389/fimmu.2021.721013 URL |
[63] |
Tebruegge M, Dutta B, Donath S, et al. Mycobacteria-Specific Cytokine Responses Detect Tuberculosis Infection and Distinguish Latent from Active Tuberculosis. Am J Respir Crit Care Med, 2015, 192(4):485-499. doi: 10.1164/rccm.201501-0059OC.
doi: 10.1164/rccm.201501-0059OC URL |
[64] |
Losada PX, Perdomo-Celis F, Castro M, et al. Locally-secreted interleukin-6 is related with radiological severity in smear-negative pulmonary tuberculosis. Cytokine, 2020, 127:154950. doi: 10.1016/j.cyto.2019.154950.
doi: 10.1016/j.cyto.2019.154950 URL |
[65] |
Parigi S, Licari A, Manti S, et al. Tuberculosis and TNF-α inhibitors in children: how to manage a fine balance. Acta Biomed, 2020, 91(11-S):e2020009. doi: 10.23750/abm.v91i11-S.10311.
doi: 10.23750/abm.v91i11-S.10311 |
[66] |
Suliman AM, Bek SA, Elkhatim MS, et al. Tuberculosis following programmed cell death receptor-1 (PD-1) inhibitor in a patient with non-small cell lung cancer. Cancer Immunol Immunother, 2021, 70(4):935-944. doi: 10.1007/s00262-020-02726-1.
doi: 10.1007/s00262-020-02726-1 pmid: 33070259 |
[67] |
Lee JJ, Chan A, Tang T. Tuberculosis reactivation in a patient receiving anti-programmed death-1 inhibitor for relapsed Hodgkin’s lymphoma. Acta Oncol, 2016, 55(4):519-520. doi: 10.3109/0284186X.2015.1125017.
doi: 10.3109/0284186X.2015.1125017 URL |
[68] |
Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med, 2019, 11(475):eaat2702. doi: 10.1126/scitranslmed.aat2702.
doi: 10.1126/scitranslmed.aat2702 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||