Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (10): 1079-1084.doi: 10.19982/j.issn.1000-6621.20220194
• Review Articles • Previous Articles Next Articles
Wang Li, Yang Enzhuo, Sha Wei(), Shen Hongbo
Received:
2022-05-23
Online:
2022-10-10
Published:
2022-09-30
Contact:
Sha Wei
E-mail:shfksw@126.com
Supported by:
CLC Number:
Wang Li, Yang Enzhuo, Sha Wei, Shen Hongbo. Research progress in immunotherapy of tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(10): 1079-1084. doi: 10.19982/j.issn.1000-6621.20220194
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220194
免疫细胞 | 治疗方式 | 作用机制 | 主要效果 |
---|---|---|---|
Vγ2Vδ2T细胞 | 体外扩增回输或者体内刺激γδT细胞增殖 | 识别MTB和宿主细胞的磷酸抗原 | 抗感染 |
固有自然杀伤T细胞 | 固有自然杀伤T细胞移植 | 释放大量IFN-γ进一步激活巨噬细胞,分泌粒细胞-巨噬细胞集落刺激因子 | 抑制MTB的增殖 |
黏膜相关固有T细胞 | 5-OP-RU疫苗刺激 | 分泌IFN-γ、TNF-α,启动CD4+T 细胞,减少靶器官MTB菌落数 | 早期感染控制 |
调节性T细胞 | 抑制调节性T细胞增殖和活性 | 干扰树突状细胞对T细胞的激活,抑制Th1和Th17介导的免疫反应 | 提高免疫应答水平 |
细胞因子诱导的杀伤细胞 | 体外扩增和活化淋巴细胞后回输 | 具有T淋巴细胞强大的免疫活性和NK细胞的非主要组织相容性复合体限制的优点 | 提高MDR-TB的疗效 |
[1] |
Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015, 264(1):182-203. doi: 10.1111/imr.12266.
doi: 10.1111/imr.12266 pmid: 25703560 |
[2] |
Ernst JD. Mechanisms of M.tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe, 2018, 24(1):34-42. doi: 10.1016/j.chom.2018.06.004.
doi: S1931-3128(18)30316-0 pmid: 30001523 |
[3] |
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-gamma): Exploring its implications in infectious diseases. Biomol Concepts, 2018, 9(1):64-79. doi: 10.1515/bmc-2018-0007.
doi: 10.1515/bmc-2018-0007 URL |
[4] |
Ni B, Rajaram MV, Lafuse WP, et al. Mycobacterium tuberculosis decreases human macrophage IFN-γ responsiveness through miR-132 and miR-26a. J Immunol, 2014, 193(9):4537-4547. doi: 10.4049/jimmunol.1400124.
doi: 10.4049/jimmunol.1400124 URL |
[5] |
Gao XF, Yang ZW, Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a systema-tic review. Int J Infect Dis, 2011, 15(9):e594-600. doi: 10.1016/j.ijid.2011.05.002.
doi: 10.1016/j.ijid.2011.05.002 URL |
[6] |
Rothchild AC, Jayaraman P, Nunes-Alves C, et al. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog, 2014, 10(1):e1003805. doi: 10.1371/journal.ppat.1003805.
doi: 10.1371/journal.ppat.1003805 URL |
[7] |
Rothchild AC, Stowell B, Goyal G, et al. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection. mBio, 2017, 8(5):e01514-17. doi: 10.1128/mBio.01514-17.
doi: 10.1128/mBio.01514-17 |
[8] |
Francisco-Cruz A, Mata-Espinosa D, Estrada-Parra S, et al. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis. Clin Exp Immunol, 2013, 171(3):283-297. doi: 10.1111/cei.12015.
doi: 10.1111/cei.12015 pmid: 23379435 |
[9] |
Zhang Y, Liu J, Wang Y, et al. Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis. Sci China Life Sci, 2012, 55(9):800-806. doi: 10.1007/s11427-012-4368-x.
doi: 10.1007/s11427-012-4368-x URL |
[10] |
Di Paolo NC, Shafiani S, Day T, et al. Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection. Immunity, 2015, 43(6):1125-1136. doi: 10.1016/j.immuni.2015.11.016.
doi: 10.1016/j.immuni.2015.11.016 URL |
[11] |
Sousa J, Cá B, Maceiras AR, et al. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun, 2020, 11(1):1949. doi: 10.1038/s41467-020-15832-6.
doi: 10.1038/s41467-020-15832-6 |
[12] |
Moorlag SJCFM, Khan N, Novakovic B, et al. β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Rep, 2020, 31(7):107634. doi: 10.1016/j.celrep.2020.107634.
doi: 10.1016/j.celrep.2020.107634 URL |
[13] |
Liu X, Li F, Niu H, et al. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimu-lation. Front Immunol, 2019, 10:2350. doi: 10.3389/fimmu.2019.02350.
doi: 10.3389/fimmu.2019.02350 URL |
[14] |
Tan Q, Min R, Dai GQ, et al. Clinical and Immunological Effects of rhIL-2 Therapy in Eastern Chinese Patients with Multidrug-resistant Tuberculosis. Sci Rep, 2017, 7(1):17854. doi: 10.1038/s41598-017-18200-5.
doi: 10.1038/s41598-017-18200-5 pmid: 29259310 |
[15] |
Zhang R, Xi X, Wang C, et al. Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: A systematic review and meta-analysis. PLoS One, 2018, 13(7):e0201025. doi: 10.1371/journal.pone.0201025.
doi: 10.1371/journal.pone.0201025 URL |
[16] |
Mi J, Liang Y, Liang J, et al. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol, 2021, 11:763591. doi: 10.3389/fcimb.2021.763591.
doi: 10.3389/fcimb.2021.763591 URL |
[17] |
Rao M, Ligeiro D, Maeurer M. Precision medicine in the clinical management of respiratory tract infections including multidrug-resistant tuberculosis: learning from innovations in immuno-oncology. Curr Opin Pulm Med, 2019, 25(3):233-241. doi: 10.1097/MCP.0000000000000575.
doi: 10.1097/MCP.0000000000000575 pmid: 30883448 |
[18] |
Shen Y, Zhou D, Qiu L, et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science, 2002, 295(5563):2255-2258. doi: 10.1126/science.1068819.
doi: 10.1126/science.1068819 pmid: 11910108 |
[19] |
Herrmann T, Fichtner AS, Karunakaran MM. An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells, 2020, 9(6):1433. doi: 10.3390/cells9061433.
doi: 10.3390/cells9061433 |
[20] |
Shen L, Huang D, Qaqish A, et al. Fast-acting γδ T-cell subpopulation and protective immunity against infections. Immunol Rev, 2020, 298(1):254-263. doi: 10.1111/imr.12927.
doi: 10.1111/imr.12927 pmid: 33037700 |
[21] |
Yan L, Shen H, Xiao H. Characteristics of peripheral Vγ2Vδ2 T cells in interferon-γ release assay negative pulmonary tuberculosis patients. BMC Infect Dis, 2018, 18(1):453. doi: 10.1186/s12879-018-3328-x.
doi: 10.1186/s12879-018-3328-x |
[22] |
Gao Y, Zhang S, Ou Q, et al. Characterization of CD4/CD8+ alphabeta and Vgamma2Vdelta2+ T cells in HIV-negative individuals with different Mycobacterium tuberculosis infection statuses. Hum Immunol, 2015, 76(11):801-807. doi: 10.1016/j.humimm.2015.09.039.
doi: 10.1016/j.humimm.2015.09.039 URL |
[23] |
Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol, 2010, 11(3):197-206. doi: 10.1038/ni.1841.
doi: 10.1038/ni.1841 pmid: 20139988 |
[24] |
Mogues T, Goodrich ME, Ryan L, et al. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med, 2001, 193(3):271-280. doi: 10.1084/jem.193.3.271.
doi: 10.1084/jem.193.3.271 pmid: 11157048 |
[25] |
Sada-Ovalle I, Chiba A, Gonzales A, et al. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog, 2008, 4(12):e1000239. doi: 10.1371/journal.ppat.1000239.
doi: 10.1371/journal.ppat.1000239 URL |
[26] |
Godfrey DI, Koay HF, McCluskey J, et al. The biology and functional importance of MAIT cells. Nat Immunol, 2019, 20(9):1110-1128. doi: 10.1038/s41590-019-0444-8.
doi: 10.1038/s41590-019-0444-8 pmid: 31406380 |
[27] |
Suliman S, Gela A, Mendelsohn SC, et al. Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. J Infect Dis, 2020, 222(6):995-1007. doi: 10.1093/infdis/jiaa173.
doi: 10.1093/infdis/jiaa173 pmid: 32267943 |
[28] |
Kauffman KD, Sallin MA, Hoft SG, et al. Limited Pulmonary Mucosal-Associated Invariant T Cell Accumulation and Activation during Mycobacterium tuberculosis Infection in Rhesus Macaques. Infect Immun, 2018, 86(12):e00431-18. doi: 10.1128/iai.00431-18.
doi: 10.1128/iai.00431-18 |
[29] |
Sakai S, Kauffman KD, Oh S, et al. MAIT cell-directed thera-py of Mycobacterium tuberculosis infection. Mucosal Immunol, 2021, 14(1):199-208. doi: 10.1038/s41385-020-0332-4.
doi: 10.1038/s41385-020-0332-4 URL |
[30] |
Cardona P, Cardona PJ. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol, 2019, 10:2139. doi: 10.3389/fimmu.2019.02139.
doi: 10.3389/fimmu.2019.02139 |
[31] |
Geffner L, Yokobori N, Basile J, et al. Patients with multidrug-resistant tuberculosis display impaired Th 1 responses and enhanced regulatory T-cell levels in response to an outbreak of multidrug-resistant Mycobacterium tuberculosis M and Ra strains. Infect Immun, 2009, 77(11):5025-5034. doi: 10.1128/IAI.00224-09.
doi: 10.1128/IAI.00224-09 pmid: 19720756 |
[32] |
Davids M, Pooran AS, Pietersen E, et al. Regulatory T Cells Subvert Mycobacterial Containment in Patients Failing Extensively Drug-Resistant Tuberculosis Treatment. Am J Respir Crit Care Med, 2018, 198(1):104-116. doi: 10.1164/rccm.201707-1441OC.
doi: 10.1164/rccm.201707-1441OC URL |
[33] |
Introna M. CIK as therapeutic agents against tumors. J Autoimmun, 2017, 85:32-44. doi: 10.1016/j.jaut.2017.06.008.
doi: S0896-8411(17)30413-4 pmid: 28679475 |
[34] |
Xu JC, Chen XN, Ye ZJ, et al. New attempt in tuberculosis treatment: autologous cytokine-induced killer after chemothera-py treatment failure in a case of multi-drug resistant tuberculosis (MTB). Sarcoidosis Vasc Diffuse Lung Dis, 2017, 34(1):97-99. doi: 10.36141/svdld.v34i1.5084.
doi: 10.36141/svdld.v34i1.5084 |
[35] |
Xu P, Pang Y, Xu J, et al. Cytokine-induced killer cell therapy as a promising adjunctive immunotherapy for multidrug-resistant pulmonary TB: a case report. Immunotherapy, 2018, 10(10):827-830. doi: 10.2217/imt-2017-0192.
doi: 10.2217/imt-2017-0192 pmid: 30073894 |
[36] |
林晶晶, 刘旭晖, 卢水华. 结核病疫苗的临床试验进展. 中华传染病杂志, 2020, 38(7):455-459. doi: 10.3760/cma.j.cn311365-20190308-00078.
doi: 10.3760/cma.j.cn311365-20190308-00078 |
[37] |
Gong WP, Liang Y, Ling YB, et al. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Mil Med Res, 2020, 7(1):25. doi: 10.1186/s40779-020-00258-4.
doi: 10.1186/s40779-020-00258-4 |
[38] |
侯长浩, 路小欢, 陆雪儿, 等. 新型结核疫苗的研究进展. 中国病原生物学杂志, 2018, 13(8):925-929. doi: 10.13350/j.cjpb.180830.
doi: 10.13350/j.cjpb.180830 |
[39] |
Sharma SK, Katoch K, Sarin R, et al. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category Ⅱ pulmonary tuberculosis in a randomized trial. Scientific Reports, 2017, 7(1):3354. doi: 10.1038/s41598-017-03514-1.
doi: 10.1038/s41598-017-03514-1 URL |
[40] |
Yan Q, Liu H, Cheng Z, et al. Immunotherapeutic effect of BCG-polysaccharide nucleic acid powder on Mycobacterium tuberculosis-infected mice using microneedle patches. Drug Deliv, 2017, 24(1):1648-1653. doi: 10.1080/10717544.2017.1391892.
doi: 10.1080/10717544.2017.1391892 URL |
[41] |
徐琳, 张程, 叶贤伟, 等. 卡介菌多糖核酸对慢性阻塞性肺疾病患者体液免疫及外周血白细胞介素-8和肿瘤坏死因子-α的影响. 华西医学, 2015, 30(1):1-5. doi: 10.7507/1002-0179.20150001.
doi: 10.7507/1002-0179.20150001 |
[42] |
Cao W, Xiao X, Zhang L, et al. Acupoint injection of Bacillus Calmette-Guerin polysaccharide nucleic acid for patients with chronic urticaria: A protocol for systematic review. Medicine (Baltimore), 2020, 99(18):e19924. doi: 10.1097/MD.0000000000019924.
doi: 10.1097/MD.0000000000019924 URL |
[43] |
李丽琴, 何莹, 张莲. 卡介菌多糖核酸联合抗组胺药物治疗慢性特发性荨麻疹的临床效果. 临床合理用药杂志, 2021, 14(17):135-137. doi: 10.15887/j.cnki.13-1389/r.2021.17.058.
doi: 10.15887/j.cnki.13-1389/r.2021.17.058 |
[44] |
陶锐. 卡介菌多糖核酸辅助治疗生殖器疱疹的临床效果与安全性. 临床合理用药杂志, 2021, 14(20):133-135. doi: 10.15887/j.cnki.13-1389/r.2021.20.055.
doi: 10.15887/j.cnki.13-1389/r.2021.20.055 |
[45] |
Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2018, 379(17):1621-1634. doi: 10.1056/NEJMoa1803484.
doi: 10.1056/NEJMoa1803484 URL |
[46] |
Luabeya AK, Kagina BM, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015, 33(33):4130-4140. doi: 10.1016/j.vaccine.2015.06.051.
doi: 10.1016/j.vaccine.2015.06.051 URL |
[47] |
Bernard-Raichon L, Colom A, Monard SC, et al. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORgammat(+) Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. J Immunol, 2021, 207(7):1857-1870. doi: 10.4049/jimmunol.2001044.
doi: 10.4049/jimmunol.2001044 pmid: 34479945 |
[48] |
中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1):9-27. doi: 10.19982/j.issn.1000-6621.20210680.
doi: 10.19982/j.issn.1000-6621.20210680 |
[49] |
Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med, 2019, 11(475):eaat2702. doi: 10.1126/scitranslmed.aat2702.
doi: 10.1126/scitranslmed.aat2702 URL |
[50] |
Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9:e52668. doi: 10.7554/eLife.52668.
doi: 10.7554/eLife.52668 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||