[1] |
World Health Organization.Global tuberculosis report 2024 [R].https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024.
|
[2] |
国家疾病预防控制局. 2023年全国法定传染病疫情概况. https://www.ndcpa.gov.cn/jbkzzx/c100016/second/content/content_1836299733133275136.html.
|
[3] |
宋媛媛, 李涛, 夏辉, et al.1997—2023年全国肺结核报告发病流行病学特征[J]. 中国防痨杂志, 2024, 46(10):1198-208. DOI:10.19982/j.issn.1000-6621.20240382.
|
[4] |
Yang SX, Xu HF, Mao YJ, et al.Predicting the Number of Reported Pulmonary Tuberculosis in Guiyang, China, Based on Time Series Analysis Techniques. Comput Math Methods Med. 2022;2022:7828131. DOI:10.1155/2022/7828131.
|
[5] |
Chen S, Wang X, Zhao J, et al.Application of the ARIMA Model in Forecasting the Incidence of Tuberculosis in Anhui During COVID-19 Pandemic from 2021 to 2022. Infect Drug Resist. 2022;15:3503-3512. DOI:10.2147/IDR.S367528.
|
[6] |
任嘉豪, 徐洁, 杨海燕. ARIMA及Holt-Winters指数平滑模型在河南省肺结核流行趋势预测中的应用[J]. 郑州大学学报(医学版), 2022, 57(06):756-60. DOI:10.13705/j.issn.1671-6825.2022.02.040.
|
[7] |
杨美涛, 王彦丁, 李志强, et al.ARIMA-SVM组合模型在肺结核发病趋势预测中的应用[J]. 现代预防医学, 2023, 50(11):1921-6. DOI:10.20043/j.cnki.MPM.202210101.
|
[8] |
Yang E, Zhang H, Guo X, et al.A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China. BMC Infect Dis. 2022;22(1):490. DOI:10.1186/s12879-022-07462-8.
|
[9] |
Chen J, Liu L, Huang J, et al.LSTM-Based Prediction Model for Tuberculosis Among HIV-Infected Patients Using Structured Electronic Medical Records: A Retrospective Machine Learning Study. [J] Multidiscip Healthc. 2024;17:3557-3573. DOI:10.2147/JMDH.S467877.
|
[10] |
Wang M, Pan J, Li X, et al.ARIMA and ARIMA-ERNN models for prediction of pertussis incidence in mainland China from 2004 to 2021. BMC Public Health. 2022;22(1):1447. DOI:10.1186/s12889-022-13872-9.
|
[11] |
Zheng Y, Zhang L, Wang C, et al.Predictive analysis of the number of human brucellosis cases in Xinjiang, China. Sci Rep. 2021;11(1):11513. DOI:10.1038/s41598-021-91176-5.
|
[12] |
Chiong R, Fan Z, Hu Z, et al.Using an improved relative error support vector machine for body fat prediction. Comput Methods Programs Biomed. 2021;198:105749. DOI:10.1016/j.cmpb.2020.105749.
|
[13] |
Pushpa B, Baskaran B, Vivekanandan S,et al.Liver fat analysis using optimized support vector machine with support vector regression. Technol Health Care. 2023;31(3):867-886. DOI:10.3233/THC-220254.
|
[14] |
Mane SS, Shrotriya P.Current Epidemiology of Pediatric Tuberculosis. Indian [J] Pediatr. 2024;91(7):711-716. DOI:10.1007/s12098-023-04910-4.
|
[15] |
Fei H, Yinyin X, Hui C, et al.The impact of the COVID-19 epidemic on tuberculosis control in China. Lancet Reg Health West Pac. 2020;3:100032. DOI:10.1016/j.lanwpc.2020.100032.
|
[16] |
Li T, Du X, Kang J, et al.Patient, Diagnosis, and Treatment Delays Among Tuberculosis Patients Before and During COVID-19 Epidemic - China, 2018-2022. China CDC Wkly. 2023;5(12):259-265. DOI:10.46234/ccdcw 2023.047.
|
[17] |
Bie S, Hu X, Zhang H, et al.Influential factors and spatial-temporal distribution of tuberculosis in mainland China. Sci Rep. 2021;11(1):6274. DOI:10.1038/s41598-021-85781-7.
|
[18] |
张鑫, 郎胜利, 白国辉, et al.2011—2020年内蒙古自治区肺结核疫情监测分析[J]. 中国防痨杂志, 2022, 44(12):1256-61.DOI:10.19982/j.issn.1000-6621.20220211.
|
[19] |
Li XX, Wang LX, Zhang H, et al.Seasonal variations in notification of active tuberculosis cases in China, 2005-2012. PLoS One. 2013;8(7):e68102. DOI:10.1371/journal.pone.0068102.
|
[20] |
Koh GC, Hawthorne G, Turner AM, Kunst H, Dedicoat M.Tuberculosis incidence correlates with sunshine: an ecological 28-year time series study. PLoS One. 2013;8(3):e57752. DOI:10.1371/journal.pone.0057752.
|
[21] |
Thorpe LE, Frieden TR, Laserson KF, Wells C, Khatri GR.Seasonality of tuberculosis in India: is it real and what does it tell us?. Lancet. 2004;364(9445):1613-1614. DOI:10.1016/S0140-6736(04)17316-9.
|
[22] |
Wang M, Kong W, He B, et al.Vitamin D and the promoter methylation of its metabolic pathway genes in association with the risk and prognosis of tuberculosis. Clin Epigenetics. 2018;10(1):118. DOI:10.1186/s13148 -018-0552-6.
|
[23] |
Liu Q, Li Z, Ji Y, et al.Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist. 2019;12:2311-2322. DOI:10.2147/IDR. S207809.
|
[24] |
Zhao D, Zhang H, Cao Q, et al.The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. PLoS One. 2022;17(2):e0262734. DOI:10.1371/journal.pone.0262734.
|
[25] |
Gebregergs GB, Berhe G, Gebrehiwot KG, et al.Predicting Tuberculosis Incidence and Its Trend in Tigray, Ethiopia: A Reality-Counterfactual Modeling Approach. Infect Drug Resist. 2024;17:3241-3251. DOI:10.2147/IDR. S464787.
|
[26] |
刘洋, 高燕琳, 史芸萍, et al.基于ARIMA模型和ARIMA-SVM组合模型的流行性感冒的发病预测研究[J]. 首都公共卫生, 2024, 18(04):195-200. DOI:10.16760/j.cnki.sdggws.2024.04.007.
|
[27] |
Mao Q, Zhang K, Yan W, et al.Forecasting the incidence of tuberculosis in China using the seasonal auto- regressive integrated moving average (SARIMA) model. J Infect Public Health. 2018;11(5):707-712. DOI:10.1016 /j.jiph.2018.04.009.
|
[28] |
Singh S, Parmar KS, Makkhan SJS, et al.Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries. Chaos Solitons Fractals. 2020;139:110086. DOI:10.1016/j.chaos.2020.110086.
|
[29] |
Wan Mohamad Nawi WIA, K Abdul Hamid AA, Lola MS, et al. Developing forecasting model for future pandemic applications based on COVID-19 data 2020-2022. PLoS One. 2023;18(5):e0285407. DOI:10.1371/ journal.pone.0285407.
|
[30] |
Huang Z, Li H, Huang B.Regional Distribution of Non-human H7N9 Avian Influenza Virus Detections in China and Construction of a Predictive Model. [J] Vet Res. 2021;65(3):253-264. DOI:10.2478/jvetres-2021-0034.
|
[31] |
Zhang C, Fu X, Zhang Y, et al.Epidemiological and time series analysis of haemorrhagic fever with renal syndrome from 2004 to 2017 in Shandong Province, China. Sci Rep. 2019;9(1):14644. DOI:10.1038/s41598-019 -50878-7.
|