中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (1): 96-99.doi: 10.3969/j.issn.1000-6621.2021.01.018
收稿日期:
2020-09-14
出版日期:
2021-01-10
发布日期:
2021-01-12
通信作者:
初乃惠
E-mail:dongchu1994@sina.com
基金资助:
Received:
2020-09-14
Online:
2021-01-10
Published:
2021-01-12
Contact:
CHU Nai-hui
E-mail:dongchu1994@sina.com
摘要:
评价抗结核药品疗效的方法,需要其指标能准确预测灭菌效果和杀菌效果。传统抗结核药品临床试验Ⅱ期临床试验采用早期杀菌活性和痰分枝杆菌培养阴转预测杀菌效果和灭菌效果,Ⅲ期临床试验用已治愈且无复发来评价疗效。新的研究显示,痰培养阴转速度、CT和正电子发射体层摄影(positron emission tomography,PET)-CT病灶定量分析和GeneXpert MTB/RIF的循环阈值在预测抗结核药品疗效方面有一定价值。
段鸿飞, 初乃惠. 抗结核药品临床试验疗效评价指标的研究进展[J]. 中国防痨杂志, 2021, 43(1): 96-99. doi: 10.3969/j.issn.1000-6621.2021.01.018
DUAN Hong-fei, CHU Nai-hui. Research progress of clinical endpoints in clinical trials of novel antituberculosis agents[J]. Chinese Journal of Antituberculosis, 2021, 43(1): 96-99. doi: 10.3969/j.issn.1000-6621.2021.01.018
[1] |
Wallis RS, Kim P, Cole S, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis, 2013,13(4):362-372. doi: 10.1016/S1473-3099(13)70034-3.
doi: 10.1016/S1473-3099(13)70034-3 URL |
[2] |
Wallis RS, Pai M, Menzies D, et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, 2010,375(9729):1920-1937. doi: 10.1016/S0140-6736(10)60359-5.
doi: 10.1016/S0140-6736(10)60359-5 URL pmid: 20488517 |
[3] |
Wallis RS, Maeurer M, Mwaba P, et al. Tuberculosis-advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect Dis, 2016,16(4):e34-46. doi: 10.1016/S1473-3099(16)00070-0.
doi: 10.1016/S1473-3099(16)00070-0 URL pmid: 27036358 |
[4] |
Perrin FMR, Lipman MCI, McHugh TD, et al. Biomarkers of treatment response in clinical trials of novel antituberculosis agents. Lancet Infect Dis, 2007,7(7):481-490. doi: 10.1016/S1473-3099(07)70112-3.
doi: 10.1016/S1473-3099(07)70112-3 URL |
[5] |
Jindani A, Aber VR, Edwards EA, et al. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis, 1980,121(6):939-949. doi: 10.1164/arrd.1980.121.6.939.
doi: 10.1164/arrd.1980.121.6.939 URL pmid: 6774638 |
[6] |
Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother, 2008,52(8):2831-2835. doi: 10.1128/AAC.01204-07.
doi: 10.1128/AAC.01204-07 URL pmid: 18505852 |
[7] |
Mitchison DA. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months. Am Rev Respir Dis, 1993,147(4), 1062-1063. doi: 10.1164/ajrccm/147.4.1062.
doi: 10.1164/ajrccm/147.4.1062 URL pmid: 8466107 |
[8] |
Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med, 2014,371(17):1577-1587. doi: 10.1056/NEJMoa1407426.
doi: 10.1056/NEJMoa1407426 URL pmid: 25196020 |
[9] |
Horne DJ, Royce SE, Gooze L, et al. Sputum monitoring during tuberculosis treatment for predicting outcome: systematic review and meta-analysis. Lancet Infect Dis, 2010,10(6):387-394. doi: 10.1016/S1473-3099(10)70071-2.
doi: 10.1016/S1473-3099(10)70071-2 URL |
[10] |
Kurbatova EV, Cegielski JP, Lienhardt C, et al. Sputum culture conversion as a prognostic marker for end-of-treatment outcome in patients with multidrug-resistant tuberculosis: a secondary analysis of data from two observational cohort stu-dies. Lancet Respir Med, 2015,3(3):201-209. doi: 10.1016/S2213-2600(15)00036-3.
doi: 10.1016/S2213-2600(15)00036-3 URL |
[11] |
Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med, 2014,371(8):723-732. doi: 10.1056/NEJMoa1313865.
doi: 10.1056/NEJMoa1313865 URL pmid: 25140958 |
[12] |
Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med, 2012,366(23):2151-2160. doi: 10.1056/NEJMoa1112433.
doi: 10.1056/NEJMoa1112433 URL pmid: 22670901 |
[13] |
Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med, 2012,367(16):1508-1518. doi: 10.1056/NEJMoa1201964.
doi: 10.1056/NEJMoa1201964 URL pmid: 23075177 |
[14] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(10):893-902. doi: 10.1056/NEJMoa1901814.
doi: 10.1056/NEJMoa1901814 URL pmid: 32130813 |
[15] |
Marx FM, Dunbar R, Enarson DA, et al. The temporal dynamics of relapse and reinfection tuberculosis after successful treatment: a retrospective cohort study. Clin Infect Dis, 2014,58(12):1676-1683. doi: 10.1093/cid/ciu186.
doi: 10.1093/cid/ciu186 URL |
[16] |
Nsofor CA, Jiang Q, Wu J, et al. Transmission is a Noticeable Cause of Resistance Among Treated Tuberculosis Patients in Shanghai, China. Sci Rep, 2017,7(1):7691. doi: 10.1038/s41598-017-08061-3.
doi: 10.1038/s41598-017-08061-3 URL pmid: 28794425 |
[17] |
Li X, Zhang Y, Shen X, et al. Transmission of drug-resistant tuberculosis among treated patients in Shanghai, China. J Infect Dis, 2007,195(6):864-869. doi: 10.1086/511985.
doi: 10.1086/511985 URL pmid: 17299717 |
[18] |
Nunn AJ, Phillips PPJ, Meredith SK, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med, 2019,380(13):1201-1213. doi: 10.1056/NEJMoa1811867.
doi: 10.1056/NEJMoa1811867 URL pmid: 30865791 |
[19] |
Diacon AH, Pym A, Grobusch M, et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med, 2009,360(23):2397-2405. doi: 10.1056/NEJMoa0808427.
doi: 10.1056/NEJMoa0808427 URL pmid: 19494215 |
[20] |
von Groote-Bidlingmaier F, Patientia R, Sanchez E, et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir Med, 2019,7(3):249-259. doi: 10.1016/S2213-2600(18)30426-0.
doi: 10.1016/S2213-2600(18)30426-0 URL pmid: 30630778 |
[21] |
Chen RY, Dodd LE, Lee M, et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resis-tant tuberculosis. Sci Transl Med, 2014,6(265):265ra166. doi: 10.1126/scitranslmed.3009501.
doi: 10.1126/scitranslmed.3009501 URL pmid: 25473034 |
[22] |
Coleman MT, Chen RY, Lee M, et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med, 2014,6(265):265ra167. doi: 10.1126/scitranslmed.3009500.
doi: 10.1126/scitranslmed.3009500 URL pmid: 25473035 |
[23] |
Coleman MT, Maiello P, Tomko J, et al. Early Changes by (18)Fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun, 2014,82(6):2400-2404. doi: 10.1128/IAI.01599-13.
doi: 10.1128/IAI.01599-13 URL |
[24] |
Lin PL, Coleman T, Carney JPJ, et al. Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother, 2013,57(9):4237-4244. doi: 10.1128/AAC.00277-13.
doi: 10.1128/AAC.00277-13 URL pmid: 23796926 |
[25] |
Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med, 2013,1(6):462-470. doi: 10.1016/S2213-2600(13)70119-X.
doi: 10.1016/S2213-2600(13)70119-X URL pmid: 24429244 |
[26] |
Friedrich SO, Venter A, Kayigire XA, et al. Suitability of Xpert MTB/RIF and genotype MTBDRplus for patient selection for a tuberculosis clinical trial. J Clin Microbiol, 2011,49(8):2827-2831. doi: 10.1128/JCM.00138-11.
doi: 10.1128/JCM.00138-11 URL |
[27] |
Shenai S, Ronacher K, Malherbe S, et al. Bacterial loads measured by the Xpert MTB/RIF assay as markers of culture conversion and bacteriological cure in pulmonary TB. PLoS One, 2016,11(8):e0160062. doi: 10.1371/journal.pone.0160062.
doi: 10.1371/journal.pone.0160062 URL pmid: 27508390 |
[28] |
Malherbe ST, Shenai S, Ronacher K, et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med, 2016,22(10):1094-1100. doi: 10.1038/nm.4177.
doi: 10.1038/nm.4177 URL pmid: 27595324 |
[1] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
[2] | 中国防痨协会《中国防痨杂志》编辑委员会 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所 Inspire⁃CODA研究组. 康替唑胺治疗结核病专家共识[J]. 中国防痨杂志, 2025, 47(2): 123-129. |
[3] | 李雪莲, 张红燕, 王隽, 王庆枫, 马丽萍, 初乃惠, 聂文娟. 耐药肺结核患者超疗程使用德拉马尼的安全性分析[J]. 中国防痨杂志, 2025, 47(2): 164-168. |
[4] | 石宜林, 顾岩. 糖皮质激素联合抗结核药物治疗对结核性浆膜炎有效性、不良反应及病死率的Meta分析[J]. 中国防痨杂志, 2025, 47(1): 77-86. |
[5] | 王菲菲, 王鹏森, 范云帆, 李同心. 重庆市244例结核病患者一线抗结核药物血药浓度情况分析[J]. 中国防痨杂志, 2024, 46(S1): 29-32. |
[6] | 孟学兵, 陈爱军. 老年肺结核患者抗结核药物的不良反应研究[J]. 中国防痨杂志, 2024, 46(S1): 76-78. |
[7] | 史露露, 景辉, 梁敏, 李学政. 液相色谱串联质谱法检测抗结核药物血药浓度情况的临床分析[J]. 中国防痨杂志, 2024, 46(8): 886-891. |
[8] | 段淑娟, 王伟, 逄宇, 李凌. 酪氨酸激酶抑制剂调控宿主抗结核作用的研究进展[J]. 中国防痨杂志, 2024, 46(5): 584-589. |
[9] | 加依那提·金格斯, 王新旗, 刘年强, 王森路, 依帕尔·艾海提, 冯建宇, 黄涛, 克地尔叶克孜·吾甫尔. 387名结核分枝杆菌潜伏感染者预防性治疗服药完成情况及影响因素分析[J]. 中国防痨杂志, 2024, 46(12): 1496-1503. |
[10] | 施春晶, 刘幸, 李龙芬, 李文明, 张华杰, 王戈, 曾海燕, 刘立, 沈凌筠. 贝达喹啉、德拉马尼和普托马尼治疗耐多药结核病对肝功能影响的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1560-1565. |
[11] | 李雪莲, 荆玮, 王庆枫, 初乃惠, 聂文娟. 含新药口服短程方案治疗耐多药/利福平耐药结核病三例并文献复习[J]. 中国防痨杂志, 2024, 46(11): 1327-1334. |
[12] | 沙巍. PAN-TB治疗策略的实施对结核病防控的意义及挑战[J]. 中国防痨杂志, 2024, 46(10): 1188-1192. |
[13] | 中国防痨协会, 《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院. 抗结核药物所致QTc间期延长临床监测和管理专家共识[J]. 中国防痨杂志, 2024, 46(1): 8-17. |
[14] | 王红红, 郭少晨, 周文强, 刘忠泉, 朱慧, 陆宇. 耐药结核病患者利奈唑胺血药浓度对血液系统毒性发生的影响[J]. 中国防痨杂志, 2023, 45(2): 165-171. |
[15] | 陈芳, 张小佛, 周海依, 张锋, 王曼知. 儿童抗结核药物性肝损伤状况及相关影响因素分析[J]. 中国防痨杂志, 2023, 45(1): 45-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||