[1] |
Amodio G, Pagliara V, Moltedo O, et al. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria-ER Contacts: A Cancer Perspective. Front Cell Dev Biol, 2021, 9: 641194. doi: 10.3389/fcell.2021.641194.
doi: 10.3389/fcell.2021.641194
URL
|
[2] |
Forney LA, Stone KP, Wanders D, et al. Sensing and signaling mechanisms linking dietary methionine restriction to the behavioral and physiological components of the response. Front Neuroendocrinol, 2018, 51: 36-45. doi: 10.1016/j.yfrne.2017.12.002.
doi: 10.1016/j.yfrne.2017.12.002
URL
|
[3] |
Hwang J, Suh HW, Jeon YH, et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun, 2014, 5: 2958. doi: 10.1038/ncomms3958.
doi: 10.1038/ncomms3958
URL
|
[4] |
Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP 3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009, 183(2): 787-791. doi: 10.4049/jimmunol.0901363.
doi: 10.4049/jimmunol.0901363
pmid: 19570822
|
[5] |
Kim S, Joe Y, Jeong SO, et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1beta production via activation of the NF-kappaB and inflammasome pathways. Innate Immun, 2014, 20(8): 799-815. doi: 10.1177/1753425913508593.
doi: 10.1177/1753425913508593
URL
|
[6] |
Sachan M, Srivastava A, Ranjan R, et al. Opportunities and Challenges for Host-Directed Therapies in Tuberculosis. Curr Pharm Des, 2016, 22(17): 2599-2604. doi: 10.2174/1381612822666160128150636.
doi: 10.2174/1381612822666160128150636
URL
|
[7] |
Kolloli A, Subbian S. Host-Directed Therapeutic Strategies for Tuberculosis. Front Med (Lausanne), 2017, 4: 171. doi: 10.3389/fmed.2017.00171.
doi: 10.3389/fmed.2017.00171
|
[8] |
马征, 胡春生, 张莹莹. 冬凌草水提物治疗慢性咽炎的临床疗效及其安全性初步研究. 中南大学学报, 2011, 36(2): 170-173. doi: 10.3969/j.issn.1672-7347.2011.02.014.
doi: 10.3969/j.issn.1672-7347.2011.02.014
|
[9] |
Ding Y, Ding C, Ye N, et al. Discovery and development of natural product oridonin-inspired anticancer agents. Eur J Med Chem, 2016, 122: 102-117. doi: 10.1016/j.ejmech.2016.06.015.
doi: S0223-5234(16)30493-7
pmid: 27344488
|
[10] |
He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP 3 inhibitor with strong anti-inflammasome activity. Nat Commun, 2018, 9(1): 2550. doi: 10.1038/s41467-018-04947-6.
doi: 10.1038/s41467-018-04947-6
URL
|
[11] |
曾庆钟, 刘颖, 郐一贺, 等. 冬凌草甲素对小鼠溃疡性结肠炎内质网应激的作用研究. 重庆医学, 2018, 47(17): 2261-2265. doi: 10.3969/j.issn.1671-8348.2018.17.003.
doi: 10.3969/j.issn.1671-8348.2018.17.003
|
[12] |
宋发军, 吴士筠, 梁建军. 巴东冬凌草的抗菌活性研究. 中南民族大学学报(自然科学版), 2004, 23(4): 9-11. doi: 10.3969/j.issn.1672-4321.2004.04.003.
doi: 10.3969/j.issn.1672-4321.2004.04.003
|
[13] |
Xu Y, Xue Y, Wang Y, et al. Multiple-modulation effects of Oridonin on the production of proinflammatory cytokines and neurotrophic factors in LPS-activated microglia. Int Immunopharmacol, 2009, 9(3): 360-365. doi: 10.1016/j.intimp.2009.01.002.
doi: 10.1016/j.intimp.2009.01.002
URL
|
[14] |
Mishra BB, Moura-Alves P, Sonawane A, et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol, 2010, 12(8): 1046-1063. doi: 10.1111/j.1462-5822.2010.01450.x.
doi: 10.1111/j.1462-5822.2010.01450.x
URL
|
[15] |
Wong KW, Jacobs WR Jr. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol, 2011, 13(9): 1371-1384. doi: 10.1111/j.1462-5822.2011.01625.x.
doi: 10.1111/j.1462-5822.2011.01625.x
URL
|
[16] |
Dorhoi A, Nouailles G, Jörg S, et al. Activation of the NLRP 3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol, 2012, 42(2): 374-384. doi: 10.1002/eji.201141548.
doi: 10.1002/eji.201141548
pmid: 22101787
|
[17] |
Abais JM, Xia M, Li G, et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J Biol Chem, 2014, 289(39): 27159-27168. doi: 10.1074/jbc.M114.567537.
doi: 10.1074/jbc.M114.567537
URL
|
[18] |
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010, 11(2): 136-140. doi: 10.1038/ni.1831.
doi: 10.1038/ni.1831
URL
|
[19] |
Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol, 2018, 16: 32-46. doi: 10.1016/j.redox.2018.02.013.
doi: 10.1016/j.redox.2018.02.013
URL
|
[20] |
Oslowski CM, Hara T, O’Sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab, 2012, 16(2): 265-273. doi: 10.1016/j.cmet.2012.07.005.
doi: 10.1016/j.cmet.2012.07.005
URL
|
[21] |
Lim YJ, Choi JA, Choi HH, et al. Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS One, 2011, 6(12): e28531. doi: 10.1371/journal.pone.0028531.
doi: 10.1371/journal.pone.0028531
URL
|
[22] |
Song C, Wang Y, Cui L, et al. Triptolide attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: involvement of NF-kappaB pathway. BMC Complement Altern Med, 2019, 19(1): 198. doi: 10.1186/s12906-019-2616-3.
doi: 10.1186/s12906-019-2616-3
URL
|