Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (9): 1187-1195.doi: 10.19982/j.issn.1000-6621.20250146
• Original Articles • Previous Articles Next Articles
Zhu Tingting1, Wang Mingzhe2, Zulikatiayi Abudula2, Gulina Badeerhan2, Kaideliyan Abuduwaili2, Wang Le2()
Received:
2025-04-09
Online:
2025-09-10
Published:
2025-08-27
Contact:
Wang Le
E-mail:370169620@qq.com
Supported by:
CLC Number:
Zhu Tingting, Wang Mingzhe, Zulikatiayi Abudula, Gulina Badeerhan, Kaideliyan Abuduwaili, Wang Le. Preliminary analysis of the construction of mouse models infected with Xinjiang Uygur Autonomous Region Mycobacterium tuberculosis CAS lineage and H37Rv standard strain[J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1187-1195. doi: 10.19982/j.issn.1000-6621.20250146
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250146
分组 | 第4周 | 第8周 | ||||
---|---|---|---|---|---|---|
IgG | IgM | IgA(×10-2) | IgG | IgM | IgA(×10-2) | |
生理盐水组 | 2.30(1.86,2.68) | 0.50±0.13 | 0.28(0.21,0.51) | 3.83(2.12,5.04) | 0.61±0.09 | 0.39±0.14 |
H37Rv组 | 3.17(1.94,7.71) | 0.71(0.38,0.80) | 0.56(0. 10,0.81) | 6.88±1.80 | 0.92±0.16 | 1.32±0.59 |
CAS组 | 7.58±1.87 | 0.95±0.19 | 1.50±0.42 | 7.26±1.64 | 0.96±0.12 | 0.92±0.32 |
统计检验值 | H=3.825 | F=5.249 | H=12.075 | F=5.051 | F=11.455 | F=7.033 |
P值 | 0.052 | 0.023 | 0.001 | 0.026 | 0.002 | 0.010 |
t值a | - | -0.317 | -0.605 | -2.573 | -3.827 | -3.738 |
P值 | - | 0.756 | 0.556 | 0.024 | 0.002 | 0.003 |
t值b | - | -2.634 | -3.921 | -0.329 | -0.575 | 1.610 |
P值 | - | 0.022 | 0.002 | 0.748 | 0.576 | 0.133 |
t值c | - | 2.951 | -4.526 | 2.902 | 4.403 | 2.129 |
P值 | - | 0.012 | 0.001 | 0.013 | 0.001 | 0.055 |
[1] | 张慧, 赵雁林, 严俊. 我国结核病预防控制进展与挑战. 中国预防医学杂志, 2025, 26(1): 1-7. doi:10.16506/j.1009-6639.2025.01.001. |
[2] | 李黎, 陶利, 钟雪梅, 等. 艾滋病与结核病共患机制研究进展. 中国当代医药, 2022, 29(30): 31-34. doi:10.3969/j.issn.1674-4721.2022.30.008. |
[3] | Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet, 2013, 45(7):784-790. doi:10.1038/ng.2656. |
[4] |
Zhan L, Tang J, Sun M, et al. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol, 2017, 8:717. doi:10.3389/fmicb.2017.00717.
pmid: 28522990 |
[5] | Gong W, Liang Y, Wu X. Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. Biomed Res Int, 2020, 2020: 4263079. doi:10.1155/2020/4263079. |
[6] | 吕艳. Mtb感染BALB/c鼠B细胞亚群变化及体液免疫应答研究. 大理: 大理学院, 2014. |
[7] | 王钰婷, 陶必林, 李忠奇, 等. 全球结核分枝杆菌谱系分布与耐药分析. 中华疾病控制杂志, 2022, 26(11): 1248-1251, 1295. doi:10.16462/j.cnki.zhjbkz.2022.11.002. |
[8] | Merker M, Blin C, Mona S, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet, 2015, 47 (3): 242-249. doi:10.1038/ng.3195. |
[9] |
Stucki D, Brites D, Jeljeli L, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet, 2016, 48 (12): 1535-1543. doi:10.1038/ng.3704.
pmid: 27798628 |
[10] | Merker M, Barbier M, Cox H, et al. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. Elife, 2018, 7:e38200. doi:10.7554/eLife.38200. |
[11] | Ates LS, Dippenaar A, Ummels R, et al. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol, 2018, 3 (2): 181-188. doi:10.1038/s41564-017-0090-6. |
[12] | Brudey K, Driscoll JR, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpoLDB4) for classification, population genetics and epidemiology. BMC Microbiol, 2006, 6: 23. doi:10.1186/1471-2180-6-23. |
[13] |
Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet, 2014, 15(5):307-320. doi:10.1038/nrg3664.
pmid: 24662221 |
[14] | Niemann S, Merker M, Kohl T, et al. Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains. Microbiol Spectr, 2016, 4(6). doi:10.1128/microbiolspec.TBTB2-0022-2016. |
[15] | Chihota VN, Niehaus A, Streicher EM, et al. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One, 2018, 13 (8): e0200632. doi:10.1371/journal.pone.0200632. |
[16] | Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol, 2018, 16 (4): 202-213. doi:10.1038/nrmicro.2018.8. |
[17] | Shuaib YA, Khalil EAG, Wieler LH, et al. Mycobacterium tuberculosis Complex Lineage 3 as Causative Agent of Pulmonary Tuberculosis, Eastern Sudan. Emerg INfect Dis, 2020, 26 (3): 427-436. doi:10.3201/eid2603.191145. |
[18] | Kerubo G, Ndungu P, Shuaib YA, et al. Molecular Epidemio-logy of Mycobacterium tuberculosis Complex Strains in Urban and Slum Settings of Nairobi, Kenya. Genes, 2022, 13 (3): 475. doi:10.3390/genes13030475. |
[19] | O’Neill MB, Shockey A, Zarley A, et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol, 2019, 28 (13): 3241-3256. doi:10.1111/mec.15120. |
[20] | 帕里旦古丽·阿不都热合曼, 王森路, 古丽娜·巴德尔汗, 等. 喀什地区结核分枝杆菌基因型分布及其与肺结核患者临床特征的关联. 中国防痨杂志, 2024, 46(9): 1077-1082. doi:10.19982/j.issn.1000-6621.20240206. |
[21] | Guerra-Assunção JA, Crampin AC, Houben RM, et al. Large-scale whole genome sequencing of M.tuberculosis provides insights into transmission in a high prevalence area. Elife, 2015, 4:e05166. doi:10.7554/eLife.05166. |
[22] | Holt KE, McAdam P, Thai PVK, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet, 2018, 50 (6): 849-856. doi:10.1038/s41588-018-0117-9. |
[23] | Sobkowiak B, Banda L, Mzembe T, et al. Bayesian reconstruction of Mycobacterium tuberculosis transmission networks in a high incidence area over two decades in Malawi reveals associated risk factors and genomic variants. Microb Genom, 2020, 6 (4):e000361. doi:10.1099/mgen.0.000361. |
[24] | Dixit A, Kagal A, Ektefaie Y, et al. Modern lineages of Mycobacterium tuberculosis were recently introduced in western india and demonstrate increased transmissibility. Open Forum Infect Dis, 2021, 8(Suppl 1): S783-S784. doi:10.1093/ofid/ofab466.1589. |
[25] | Portevin D, Gagneux S, Comas I, et al. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog, 2011, 7 (3): e1001307. doi:10.1371/journal.ppat.1001307. |
[26] | Dong H, Liu Z, Lv B, et al. Spoligotypes of Mycobacterium tuberculosis from different Provinces of China. J Clin Microbiol, 2010, 48(11): 4102-4106. doi:10.1128/JCM.00549-10. |
[27] | Tanveer M, Hasan Z, Siddiqui AR, et al. Genotyping and drug resistance patterns of M.Tuberculosis strains in Pakistan. BMC Infect Dis, 2008, 8 (1): 171. doi:10.1186/1471-2334-8-171. |
[28] | Merza MA, Farnia P, Salih AM, et al. The most predominant spoligopatterns of Mycobacterium tuberculosis isolates among Iranian, Afghan-immigrant, Pakistani and Turkish tuberculosis patients: A comparative analysis. Chemotherapy, 2010, 56(3): 248-257. doi:10.1159/000316846. |
[29] | Bashir G, Wani T, Sharma P, et al. Predominance of Central Asian and European families among Mycobacterium tuberculosis isolates in Kashmir Valley, India. Indian J Tuberc, 2017, 64 (4): 302-308. doi:10.1016/j.ijtb.2017.05.004. |
[30] | Xu AM, He CJ, Cheng X, et al. Distribution and identification of Mycobacterium tuberculosis lineage in kashgar prefecture. BMC Infect Dis, 2022, 22 (1): 312. doi:10.1186/S12879-022-07307-4. |
[31] | Sasaninia K, Kelley M, Abnousian A, et al. Liposomal Glutathione Supplementation Mitigates Extrapulmonary Tuberculosis in the Liver and Spleen. Front Biosci(Elite Ed), 2023, 15 (3): 15. doi:10.31083/j.fbe1503015. |
[32] | 向志光, 林树柱, 董娜, 等. 结核分枝杆菌感染小鼠的脾脏和肺脏组织荷菌量与病理变化. 中国比较医学杂志, 2011, 21(8): 66-68, 82. doi:10.3969/j.issn.1671-7856.2011.08.017. |
[33] | 舒丽, 佘轩, 赵川. 小鼠脾脏il-35 mrna表达水平与结核分枝杆菌感染的相关性分析. 临床和实验医学杂志, 2020, 19(10): 1056-1059. doi:10.3969/j.issn.1671-4695.2020.010.014. |
[34] | 汤红明, 刘君炎, 高立芬. IFN-γ与TNF联合治疗结核菌感染小鼠疗效及机理的研究. 免疫学杂志, 2001, 17(6): 457-459. doi:10.3969/j.issn.1000-8861.2001.06.016. |
[35] |
Suenaga T, Okuyama T, Yoshida I, et al. Effect of Mycobacterium tuberculosis BCG infection on the resistance of mice to ectromelia virus infection: Participation of interferon in enhanced resistance. Infect Immun, 1978, 20 (1): 312-314. doi:10.1128/iai.20.1.312-314.1978.
pmid: 208973 |
[36] | 梁艳, 吴雪琼, 王兰, 等. 结核必治丸治疗小鼠结核病模型的疗效研究(英文). 中国现代医学杂志, 2009, 19(8): 1126-1129, 1138. doi:10.3969/j.issn.1005-8982.2009.08.002. |
[37] | Sarkar R, Lenders L, Wilkinson KA, et al. Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS One, 2012, 7 (8): e43170. doi:10.1371/journal.pone.0043170. |
[38] |
Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev, 2012, 36 (3): 514-532. doi:10.1111/j.1574-6976.2012.00331.x.
pmid: 22320122 |
[39] | Griffin JE, Pandey AK, Gilmore SA, et al. Cholesterol cata-bolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol, 2012, 19(2):218-227. doi:10.1016/j.chembiol.2011.12.016. |
[40] | 陈龙培, 林海仁, 陈海军, 等. 活动性肺结核患者血清结核抗体IgG表达水平及临床意义. 实用中西医结合临床, 2020, 20 (12): 21-22, 24. doi:10.13638/j.issn.1671-4040.2020.12.009. |
[41] | 王禹心, 李雅鑫, 肖俊宇. 免疫球蛋白IgM和IgA的分子机制研究进展. 中国科学(生命科学), 2025, 55 (5): 932-947. doi:10.1360/SSV-2024-0287. |
[42] | 吕艳, 白丽, 刘文文, 等. Mtb感染balb/c鼠淋巴细胞亚群及血清抗体水平变化. 热带医学杂志, 2017, 17(5): 583-587. doi:10.3969/j.issn.1672-3619.2017.05.008. |
[43] | Kumagai T, Palacios A, Casadevall A, et al. Serum IgM Glycosylation Associated with Tuberculosis Infection in Mice. mSphere, 2019, 4 (2): e00684-18. doi:10.1128/mSphere.00684-18. |
[44] |
Martinez-Garcia MA, Guan WJ, de-la-Rosa D, et al. Post-TB bronchiectasis: from pathogenesis to rehabilitation. Int J Tuberc Lung Dis, 2023, 27 (3): 175-181. doi:10.5588/IJTLD.22.0566.
pmid: 36855043 |
[45] | Young C, Ahlers P, Hiemstra AM, et al. Performance and immune characteristics of bronchoalveolar lavage by research bronchoscopy in pulmonary tuberculosis and other lung diseases in the Western Cape, South Africa. Transl Med Commun, 2019, 4 (1): 1-12. doi:10.1186/s41231-019-0039-2. |
[46] | Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol, 2021, 12:775326. doi:10.3389/fimmu.2021.775326. |
[47] |
Agarwal P, Combes TW, Shojaee-Moradie F, et al. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol, 2020, 11:1394. doi:10.3389/fmicb.2020.01394.
pmid: 32754123 |
[48] | Zhao Y, Zhao S, Liu S, et al. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol, 2025, 146:113808. doi:10.1016/J.INTIMP.2024.113808. |
[1] | Yan Yueming, Chen Meng, Li Xuekui, Wang Zhongdong, Sun Haiyan, Dai Xiaoqi, Song Song, Xu Honghong, Zhang Menghan, Wang Zhi, Lyu Kunzheng. Prevalence and influencing factors of latent tuberculosis infection among elderly residents in nursing homes in Qingdao [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1148-1153. |
[2] | Zhang Xiaoke, Chen Ling. Research progress on the anti-tuberculosis effect and mechanism of cinnamaldehyde on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1220-1226. |
[3] | Chen Liyao, Peng Xiao, Liu Yuanyuan, Shi Jin, Guo Yongli, Lu Jie. The molecular mechanisms of ferroptosis and their potential applications in the diagnosis and treatment of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1227-1232. |
[4] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
[5] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
[6] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[7] | Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. |
[8] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[9] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[10] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[11] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[12] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[13] | Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. |
[14] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[15] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||