Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (6): 779-784.doi: 10.19982/j.issn.1000-6621.20250097
• Original Articles • Previous Articles Next Articles
Wei Xiaorui1,2, Yu Zeyang2, Yang Kun1,2, Zhou Ke2, Huang Fang3, Liu Hao2, Bai Lu2, Liu Jiayun1,2()
Received:
2025-03-11
Online:
2025-06-10
Published:
2025-06-11
Contact:
Liu Jiayun, Email: Supported by:
CLC Number:
Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ[J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. doi: 10.19982/j.issn.1000-6621.20250097
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250097
[1] | Hardie DG, Lin SC. AMP-activated protein kinase-not just an energy sensor. F1000Res, 2017, 6:1724. doi:10.12688/f1000research.11960.1. |
[2] |
Xu H, Xu X, Wang H, et al. LKB1/p53/TIGAR/autophagy-dependent VEGF expression contributes to PM2.5-induced pulmonary inflammatory responses. Sci Rep, 2019, 9(1):16600. doi:10.1038/s41598-019-53247-6.
pmid: 31719630 |
[3] | Liu Z, Zhang W, Zhang M, et al. Liver kinase B 1 suppresses lipopolysaccharide-induced nuclear factor κB (NF-κB) activation in macrophages. J Biol Chem, 2015, 290(4):2312-2320. doi:10.1074/jbc.M114.616441. |
[4] | Baixauli F, Piletic K, Puleston DJ, et al. An LKB1-mitochondria axis controls TH 17 effector function. Nature, 2022, 610(7932):555-561. doi:10.1038/s41586-022-05264-1. |
[5] | Yang K, Blanco DB, Neale G, et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature, 2017, 548(7669):602-606. doi:10.1038/nature23665. |
[6] | He N, Fan W, Henriquez B, et al. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci U S A, 2017, 114(47):12542-12547. doi:10.1073/pnas.1715363114. |
[7] |
Wang Y, Du X, Wei J, et al. LKB1 orchestrates dendritic cell metabolic quiescence and anti-tumor immunity. Cell Res, 2019, 29(5):391-405. doi:10.1038/s41422-019-0157-4.
pmid: 30911060 |
[8] | Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature, 2010, 468(7324):653-658. doi:10.1038/nature09571. |
[9] | Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature, 2010, 468(7324):701-704. doi:10.1038/nature09595. |
[10] | Gurumurthy S, Xie SZ, Alagesan B, et al. Lkb11 metabolic sensor maintains haematopoietic stem cell survival. Nature, 2010, 468(7324):659-663. doi:10.1038/nature09572. |
[11] | Yin X, Zhuang X, Luo W, et al. LKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by Vibrio alginolyticus infection. Int J Biol Macromol, 2024, 264(Pt 2):130470. doi:10.1016/j.ijbiomac.2024.130470. |
[12] | Otto NA, de Vos AF, et al. Association of Myeloid Liver Kinase B 1 Depletion With a Reduction in Alveolar Macrophage Numbers and an Impaired Host Defense During Gram-Negative Pneumonia. J Infect Dis, 2022, 225(7):1284-1295. doi:10.1093/infdis/jiaa416. |
[13] | Wen J, Xu B, Sun Y, et al. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacol Res, 2019, 146:104308. doi:10.1016/j.phrs.2019.104308. |
[14] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断. 结核与肺部疾病杂志, 2024, 5(4):376-378. doi:10.19983/j.issn.2096-8493.2024022. |
[15] | Escalante P, Arias-Guillén M, Palacios Gutiérrez JJ. New Research Strategies in Latent Tuberculosis Infection. Arch Bronconeumol (Engl Ed), 2021, 57(3):151-153. doi:10.1016/j.arbres.2020.01.024. |
[16] | 孔雯, 刘巧, 卢鹏, 等. 江苏省部分地区结核潜伏性感染影响因素研究. 江苏预防医学, 2018, 29(3):244-246. doi:10.13668/j.issn.1006-9070.2018.03.003. |
[17] | Ikeda Y, Sato K, Pimentel DR, et al. Cardiac-specific deletion of LKB 1 leads to hypertrophy and dysfunction. J Biol Chem, 2009, 284(51):35839-35849. doi:10.1074/jbc.M109.057273. |
[18] | Koh HJ, Arnolds DE, Fujii N, et al. Skeletal muscle-selective knockout of LKB 1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol, 2006, 26(22):8217-8227. doi:10.1128/MCB.00979-06. |
[19] |
Ohashi K, Ouchi N, Higuchi A, et al. LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem, 2010, 285(29):22291-22298. doi:10.1074/jbc.M110.123794.
pmid: 20489196 |
[20] | Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB 1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 2005, 310(5754):1642-1646. doi:10.1126/science.1120781. |
[21] |
Zhang W, Ding Y, Zhang C, et al. Deletion of endothelial cell-specific liver kinase B 1 increases angiogenesis and tumor growth via vascular endothelial growth factor. Oncogene, 2017, 36(30):4277-4287. doi:10.1038/onc.2017.61.
pmid: 28346429 |
[22] | Liu M, Gu L, Zhang Y, et al. LKB1 inhibits telomerase activity resulting in cellular senescence through histone lactylation in lung adenocarcinoma. Cancer Lett, 2024, 595:217025. doi:10.1016/j.canlet.2024.217025. |
[23] | Zhu L, Wang YP, Xu XD, et al. LKB1 inhibits the phenotypic transformation of vascular smooth muscle cells by activating SIRT6. Int J Cardiol, 2024, 407:132092. doi:10.1016/j.ijcard.2024.132092. |
[24] | Lee J, Yang G, Kim YJ, et al. Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO 1 signal pathway. Biochem Biophys Res Commun, 2017, 491(3):733-739. doi:10.1016/j.bbrc.2017.07.119. |
[25] | Compton SE, Kitchen-Goosen SM, DeCamp LM, et al. LKB1 controls inflammatory potential through CRTC2-dependent histone acetylation. Mol Cell, 2023, 83(11):1872-1886. doi:10.1016/j.molcel.2023.04.017. |
[26] |
MacIver NJ, Blagih J, Saucillo DC, et al. The liver kinase B 1 is a central regulator of T cell development, activation, and metabolism. J Immunol, 2011, 187(8):4187-4198. doi:10.4049/jimmunol.1100367.
pmid: 21930968 |
[27] |
Hollstein PE, Shaw RJ. Inflamed T cells and stroma drive gut tumors. Science, 2018, 361(6400):332-333. doi:10.1126/science.aau4804.
pmid: 30049865 |
[28] | 梁建英, 杜元平, 张昌艳, 等. 肺结核患者血清中PCT、CRP、IgG抗PPD-IgG和白细胞计数的临床诊断意义. 标记免疫分析与临床, 2018, 25(7):997-1000. doi:10.11748/bjmy.issn.1006-1703.2018.07.019. |
[29] |
Guilliams M, Svedberg FR. Does tissue imprinting restrict macrophage plasticity?. Nat Immunol, 2021, 22(2):118-127. doi:10.1038/s41590-020-00849-2.
pmid: 33462453 |
[30] | Mould KJ, Barthel L, Mohning MP, et al. Cell Origin Dictates Programming of Resident Versus Recruited Macrophages During Acute Lung Injury. Am J Respir Cell Mol Biol, 2017, 57(3):294-306. doi:10.1165/rcmb.2017-0061OC. |
[31] | Wang Q, Chen S, Li T, et al. Critical Role of Lkb 1 in the Maintenance of Alveolar Macrophage Self-Renewal and Immune Homeostasis. Front Immunol, 2021, 12:629281. doi:10.3389/fimmu.2021.629281. |
[1] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[2] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[3] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[4] | Li Longfen, Shi Chunjing, Luo Yun, Zhang Huajie, Liu Jun, Wang Ge, Zhao Yanhong, Yuan Lijuan, Li Shan, Li Wenming, Shen Lingjun. Establishing and validating a prediction model for HIV-associated nontuberculous mycobacterial disease based on machine learning [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 708-718. |
[5] | Gu Yuzhen, Chen Siyi, Huang Hairong, Yu Xia. Evaluation of in vitro activity of lefamulin against mycobacteria [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 732-737. |
[6] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[7] | Shi Jie, Chang Wenjing, Zheng Danwei, Su Ruyue, Ma Xiaoguang, Zhu Yankun, Wang Shaohua, Sun Jianwei, Sun Dingyong. Screening of core genes and pathways involved in tuberculosis onset based on GEO database [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 769-778. |
[8] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[9] | Liu Fangchao, Zhang Di, Mi Fengling, Li Zihui, Huang Hairong, Pan Liping, Shi Guangli, Jiang Guanglu, Pan Junhua. Construction of a biosafety management indicator system for tuberculosis clinical testing laboratories [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 569-576. |
[10] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
[11] | Ying Guangzhi, Cai Qingshan, Ma Xiaoqing, Chen Lingyan, Chen Yuanyuan. Diagnostic value of Nanopore targeted sequencing for detecting nontuberculous mycobacteria in respiratory specimens [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 589-596. |
[12] | Yao Mingxu, Wang Zeqi, Song Ruixue, Jia Hongyan, Sun Qi, Zhang Lanyue, Du Boping, Zhang Zongde, Wang Wen, Wu Liang, Pan Liping. The performance of Mycobacterium tuberculosis-specific antigens-induced cytokines in the diagnosis of tuberculosis among HIV-infected individuals [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 605-612. |
[13] | Wang Lei, Chen Chidao, Su Lianzheng, Li Lingwei, Wang Xinmiao, Wang Peng, Huang Zhonghao. Causality between coronavirus disease 2019 and tuberculosis in Europeans: a two-sample Mendelian randomization study [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 653-659. |
[14] | Wang Yuanning, Du Zongmin. Research progress on CRISPR/Cas molecular diagnosis of drug-resistant Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 666-672. |
[15] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||