Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (6): 769-778.doi: 10.19982/j.issn.1000-6621.20240563
• Original Articles • Previous Articles Next Articles
Shi Jie, Chang Wenjing, Zheng Danwei, Su Ruyue, Ma Xiaoguang, Zhu Yankun, Wang Shaohua, Sun Jianwei, Sun Dingyong()
Received:
2024-12-13
Online:
2025-06-10
Published:
2025-06-11
Contact:
Sun Dingyong, Email: Supported by:
CLC Number:
Shi Jie, Chang Wenjing, Zheng Danwei, Su Ruyue, Ma Xiaoguang, Zhu Yankun, Wang Shaohua, Sun Jianwei, Sun Dingyong. Screening of core genes and pathways involved in tuberculosis onset based on GEO database[J]. Chinese Journal of Antituberculosis, 2025, 47(6): 769-778. doi: 10.19982/j.issn.1000-6621.20240563
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240563
基因名称 | 在结核病患者中 基因表达变化倍数 | 取对数2后的基因 表达变化(log2FC) | 基因的平均 表达水平 | P值 | 变化 趋势 |
---|---|---|---|---|---|
PDK4 | 0.491 | -1.025 | 9.588 | <0.001 | 下调 |
CABLES1 | 0.496 | -1.012 | 8.908 | <0.001 | 下调 |
GPR34 | 0.501 | -0.998 | 9.750 | <0.001 | 下调 |
KLHDC8B | 0.529 | -0.919 | 9.869 | 0.002 | 下调 |
TBC1D2 | 0.542 | -0.883 | 10.955 | <0.001 | 下调 |
CITED2 | 0.552 | -0.856 | 10.242 | <0.001 | 下调 |
HS3ST2 | 0.556 | -0.846 | 9.898 | 0.005 | 下调 |
TNFRSF21 | 0.576 | -0.797 | 12.649 | 0.001 | 下调 |
PIK3IP1 | 0.581 | -0.783 | 9.273 | <0.001 | 下调 |
AVPI1 | 0.592 | -0.756 | 11.832 | <0.001 | 下调 |
CCL3 | 6.112 | 2.612 | 12.995 | <0.001 | 上调 |
CCL4L1 | 6.698 | 2.744 | 11.713 | <0.001 | 上调 |
TNF | 7.025 | 2.812 | 11.669 | <0.001 | 上调 |
CCL8 | 7.044 | 2.816 | 11.034 | <0.001 | 上调 |
CCL20 | 7.263 | 2.861 | 11.249 | <0.001 | 上调 |
TNFAIP6 | 7.407 | 2.889 | 11.780 | <0.001 | 上调 |
IL8 | 8.225 | 3.040 | 13.419 | <0.001 | 上调 |
CXCL10 | 9.386 | 3.231 | 11.087 | <0.001 | 上调 |
LOC728835 | 9.401 | 3.233 | 12.602 | <0.001 | 上调 |
IL1B | 9.456 | 3.241 | 13.095 | <0.001 | 上调 |
基因名称 | 全称 | 编码蛋白功能 |
---|---|---|
IL1B | 白细胞介素1β (interleukin 1 beta) | 是炎症反应的重要介质,参与多种细胞活动,包括细胞增殖、分化和凋亡 |
TNF | 肿瘤坏死因子(tumor necrosis factor) | 参与调节广泛的生物学过程,包括细胞增殖、分化、凋亡、脂质代谢和凝血,与多种疾病有关 |
IL6 | 白细胞介素6(interleukin 6) | 在炎症和B细胞成熟过程中发挥作用,能够诱发自身免疫性疾病或感染患者发热 |
IL1A | 白细胞介素1α(interleukin 1 alpha) | 属于白细胞介素1细胞因子家族,参与各种免疫反应、炎症过程和造血过程 |
CXCL1 | C-X-C基序趋化因子配体1(C-X-C motif chemokine ligand 1) | 在炎症反应中发挥作用,是中性粒细胞的趋化吸引因子 |
CCL20 | C-C基序趋化因子配体20(C-C motif chemokine ligand 20) | 淋巴细胞具有趋化活性,并能抑制髓系祖细胞的增殖 |
CXCL10 | C-X-C基序趋化因子配体10(C-X-C motif chemokine ligand 10) | 该蛋白与CXCR3结合会产生多种效应,包括刺激单核细胞、自然杀伤细胞和T细胞迁移,以及调节黏附分子的表达 |
CXCL8 | C-X-C基序趋化因子配8(C-X-C motif chemokine ligand 8) | 能引导中性粒细胞到达感染部位,是炎症反应的主要介质 |
CCL3 | C-C基序趋化因子配体3(C-C motif chemokine ligand 3) | 通过与受体CCR1、CCR4和CCR5结合在炎症反应中发挥作用 |
CCR7 | C-C基序趋化因子配体7(C-Cmotif chemokinereceptor7) | 可调节淋巴结中T细胞的平衡,还可能在T细胞的活化和极化以及慢性炎症的发病机制中发挥作用 |
[1] |
Osada-Oka M, Goda N, Saiga H, et al. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int Immunol, 2019, 31(12):781-793. doi:10.1093/intimm/dxz048.
pmid: 31201418 |
[2] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[3] | Chakraborty S, Rhee KY. Tuberculosis Drug Development: History and Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect Med, 2015, 5(8):a021147. doi:10.1101/cshperspect.a021147. |
[4] |
Goswami AB, Karadarevic'D, Castaño-Rodríguez N. Immunity-related GTPase IRGM at the intersection of autophagy, inflammation, and tumorigenesis. Inflamm Res, 2022, 71(7-8):785-795. doi:10.1007/s00011-022-01595-x.
pmid: 35699756 |
[5] | Nies YH, Yahaya MF, Lim WL, et al. Microarray-based Analysis of Differential Gene Expression Profile in Rotenone-induced Parkinson’s Disease Zebrafish Model. CNS Neurol Disord Drug Targets, 2024, 23(6):761-772. doi:10.2174/1871527322666230608122552. |
[6] | Ma Y, Du J, Chen M, et al. Mitochondrial DNA methylation is a predictor of immunotherapy response and prognosis in breast cancer: scRNA-seq and bulk-seq data insights. Front Immunol, 2023, 14:1219652. doi:10.3389/fimmu.2023.1219652. |
[7] | Chen J, Liu C, Liang T, et al. Comprehensive analyses of potential key genes in active tuberculosis: A systematic review. Medicine (Baltimore), 2021, 100(30):e26582. doi:10.1097/MD.0000000000026582. |
[8] |
Lavalett L, Ortega H, Barrera LF. Human Alveolar and Splenic Macrophage Populations Display a Distinct Transcriptomic Response to Infection With Mycobacterium tuberculosis. Front Immunol, 2020, 11:630. doi:10.3389/fimmu.2020.00630.
pmid: 32373118 |
[9] | Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309):973-977. doi:10.1038/nature09247. |
[10] |
Zhang X, Chen D, Yang W, et al. Identifying candidate diagnostic markers for tuberculosis: A critical role of co-expression and pathway analysis. Math Biosci Eng, 2019, 16(2):541-552. doi:10.3934/mbe.2019026.
pmid: 30861655 |
[11] |
Li L, Lv J, He Y, et al. Gene network in pulmonary tuberculosis based on bioinformatic analysis. BMC Infect Dis, 2020, 20(1):612. doi:10.1186/s12879-020-05335-6.
pmid: 32811479 |
[12] |
Wang Y, Cui T, Zhang C, et al. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res, 2010, 9(12):6665-6677. doi:10.1021/pr100808n.
pmid: 20973567 |
[13] | Mulenga H, Zauchenberger CZ, Bunyasi EW, et al. Perfor-mance of diagnostic and predictive host blood transcriptomic signatures for Tuberculosis disease: A systematic review and meta-analysis. PLoS One, 2020, 15(8):e0237574. doi:10.1371/journal.pone.0237574. |
[14] | Mulenga H, Fiore-Gartland A, Mendelsohn SC, et al. The effect of host factors on discriminatory performance of a transcriptomic signature of tuberculosis risk. EBioMedicine, 2022, 77:103886. doi:10.1016/j.ebiom.2022.103886. |
[15] |
Kaforou M, Broderick C, Vito O, et al. Transcriptomics for child and adolescent tuberculosis. Immunol Rev, 2022, 309(1):97-122. doi:10.1111/imr.13116.
pmid: 35818983 |
[16] | Nahid P, Jarlsberg LG, Kato-Maeda M, et al. Interplay of strain and race/ethnicity in the innate immune response to M.tuberculosis. PLoS One, 2018, 13(5):e0195392. doi:10.1371/journal.pone.0195392. |
[17] | de Martino M, Lodi L, Galli L, et al. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr, 2019, 7:350. doi:10.3389/fped.2019.00350. |
[18] |
Jasenosky LD, Scriba TJ, Hanekom WA, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev, 2015, 264(1):74-87. doi:10.1111/imr.12274.
pmid: 25703553 |
[19] |
Basile JI, Kviatcovsky D, Romero MM, et al. Mycobacterium tuberculosis multi-drug-resistant strain M induces IL-17+ IFNγ- CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clin Exp Immunol, 2017, 187(1):160-173. doi:10.1111/cei.12873.
pmid: 27681197 |
[20] |
Imperiale BR, García A, Minotti A, et al. Th22 response induced by Mycobacterium tuberculosis strains is closely related to severity of pulmonary lesions and bacillary load in patients with multi-drug-resistant tuberculosis. Clin Exp Immunol, 2021, 203(2):267-280. doi:10.1111/cei.13544.
pmid: 33128773 |
[21] | Boni FG, Hamdi I, Moukendza Koundi L, et al. The Gene and Regulatory Network Involved in Ethambutol Resistance in Mycobacterium tuberculosis. Microb Drug Resist, 2023, 29(5):175-189. doi:10.1089/mdr.2021.0239. |
[22] | Zhu C, Liu Y, Hu L, et al. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J Biol Chem, 2018, 293(43):16741-16750. doi:10.1074/jbc.RA118.002693. |
[23] | Ohmori T, Yamaoka T, Ando K, et al. Molecular and Clinical Features of EGFR-TKI-Associated Lung Injury. Int J Mol Sci, 2021, 22(2):792. doi:10.3390/ijms22020792. |
[24] |
Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health, 2017, 111(5):256-264. doi:10.1080/20477724.2017.1351080.
pmid: 28715935 |
[25] |
Etna MP, Giacomini E, Severa M, et al. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis. Semin Immunol, 2014, 26(6):543-551. doi:10.1016/j.smim.2014.09.011.
pmid: 25453229 |
[26] | Uzorka JW, Bakker JA, van Meijgaarden KE, et al. Biomarkers to identify Mycobacterium tuberculosis infection among borderline QuantiFERON results. Eur Respir J, 2022, 60(2):2102665. doi:10.1183/13993003.02665-2021. |
[27] | Delemarre EM, van Hoorn L, Bossink AWJ, et al. Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis. Front Immunol, 2021, 12:725447. doi:10.3389/fimmu.2021.725447. |
[28] | Richardson K. Genes and knowledge: Response to Baverstock, K. the gene an appraisal. Prog Biophys Mol Biol, 2021, 167:12-17. doi:10.1016/j.pbiomolbio.2021.10.003. |
[29] |
Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol, 2011, 4(3):252-260. doi:10.1038/mi.2011.13.
pmid: 21430655 |
[30] | Zhang W, Shen XY, Zhang WW, et al. Corrigendum to “Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARγ” [Toxicol Appl Pharmacol. 2017; 316:17-26. doi:10.1016/j.taap.2016.12.010]. Toxicol Appl Pharmacol, 2022, 449:116091. doi:10.1016/j.taap.2022.11609. |
[31] |
Shepelkova G, Evstifeev V, Majorov K, et al. Therapeutic Effect of Recombinant Mutated Interleukin 11 in the Mouse Model of Tuberculosis. J Infect Dis, 2016, 214(3):496-501. doi:10.1093/infdis/jiw176.
pmid: 27190186 |
[32] |
Garlanda C, Di Liberto D, Vecchi A, et al. Damping excessive inflammation and tissue damage in Mycobacterium tuberculosis infection by Toll IL-1 receptor 8/single Ig IL-1-related receptor, a negative regulator of IL-1/TLR signaling. J Immunol, 2007, 179(5):3119-3125. doi:10.4049/jimmunol.179.5.3119.
pmid: 17709526 |
[1] | Yao Xiuyu, Du Ying, Chen Sijie, Geng Hong, Gao Lei. Common nursing problems and countermeasures or suggestions for home isolation and treatment of patients with infectious pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 681-686. |
[2] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[3] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[4] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[5] | Li Xuelian, Zhu Qingdong, Ma Yijing, Tusongjiang Maituoheti, Miriguli Maituoheti, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan, Lin Yanrong, Li Wei, Wang Jing. Analysis of incidence and risk factors for linezolid-related hematological side effects: a multicenter cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 719-726. |
[6] | Peng Hua, Cui Junwei, Shang Qiubai, Li Siqing, Peng Ruiqin. Effectiveness of a nursing intervention based on the Transtheoretical Model combined with the Health Belief Model in patients with pulmonary tuberculosis and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 727-731. |
[7] | Wang Hanfei, Li Jinhao, Wen Yaxin, Xu Caihong. Analysis of diagnosis and treatment delays and influencing factors of rifampicin-resistant tuberculosis patients in China, 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 738-745. |
[8] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[9] | Zhang Manhui, Zhang Mengdi, Lu Zheng, Li Junqi, Zheng Wenjing, Wang Xin, Huang Fei, Liu Jianjun, Yao Hongyan, Wang Qiqi. Analysis on the trends of pulmonary tuberculosis disease burden among the elderly population in China from 2005 to 2020 [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 753-759. |
[10] | Li Yuhong, Mei Jinzhou, Li Xue, Zhang Hui, Liu Xiaoqiu, Zhao Yanlin. Analysis of the epidemiological characteristics of inter-provincial migrant tuberculosis patients from 2018 to 2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 760-768. |
[11] | Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. |
[12] | Li Wei, Zhou Zhichao, Zheng Jie. Trends and hotspots in multidrug-resistant tuberculosis research in China (1995—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 785-791. |
[13] | Qi Qi, Wang Zihao, Ye Linlin, Peng Wenbei, Zhou Qiong. Immune checkpoint inhibitors and tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 792-797. |
[14] | Huang Weiqiang, Yuan Chuchu, Zhang Huan, Wang Lili, Zhong Xiaofeng, Chen Xingxing, Hu Ming. Analysis of blood concentrations of intravenous antituberculosis drugs in 45 mechanically ventilated patients with severe tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 798-807. |
[15] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||