Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (3): 362-368.doi: 10.19982/j.issn.1000-6621.20240512
• Review Articles • Previous Articles Next Articles
Shi Hongyu1,2, Zhang Guoliang1,2(), Xiao Guohui2
Received:
2024-11-19
Online:
2025-03-10
Published:
2025-02-27
Contact:
Zhang Guoliang, Email: Supported by:
CLC Number:
Shi Hongyu, Zhang Guoliang, Xiao Guohui. Application of single-cell transcriptome sequencing technology in tuberculosis research[J]. Chinese Journal of Antituberculosis, 2025, 47(3): 362-368. doi: 10.19982/j.issn.1000-6621.20240512
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240512
[1] | Villar-Hernández R, Ghodousi A, Konstantynovska O, et al. Tuberculosis: current challenges and beyond. Breathe(Sheff), 2023, 19(1): 220166. doi:10.1183/20734735.0166-2022. |
[2] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[3] |
Tang X, Huang Y, Lei J, et al. The single-cell sequencing: new developments and medical applications. Cell Biosci, 2019, 9: 53. doi:10.1186/s13578-019-0314-y.
pmid: 31391919 |
[4] | Ke M, Elshenawy B, Sheldon H, et al. Single cell RNA-sequencing: A powerful yet still challenging technology to study cellular heterogeneity. Bioessays, 2022, 44(11): e2200084. doi:10.1002/bies.202200084. |
[5] | Kashima Y, Sakamoto Y, Kaneko K, et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med, 2020, 52(9): 1419-1427. doi:10.1038/s12276-020-00499-2. |
[6] |
Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis, 2005, 85(5-6): 277-293. doi:10.1016/j.tube.2005.08.008.
pmid: 16249122 |
[7] | Tiwari S, Casey R, Goulding CW, et al. Infect and inject: how Mycobacterium tuberculosis exploits its major virulence-associated type Ⅶ secretion system, ESX-1. Microbiol Spectr, 2019, 7(3): 10.1128/microbiolspec.bai-0024-2019. doi:10.1128/microbiolspec.BAI-0024-2019. |
[8] | Zheng W, Borja M, Dorman L, et al. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M.tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. bioRxiv, 2024: 2024.04.20.590421. doi:10.1101/2024.04.20.590421. |
[9] | Bobba S, Howard NC, Das S, et al. Mycobacterium tuberculosis infection drives differential responses in the bone marrow hematopoietic stem and progenitor cells. Infect Immun, 2023, 91(10): e00201-23. doi:10.1128/iai.00201-23. |
[10] | Akter S, Chauhan KS, Dunlap MD, et al. Mycobacterium tuberculosis infection drives a type Ⅰ IFN signature in lung lymphocytes. Cell Rep, 2022, 39(12): 110983. doi:10.1016/j.celrep.2022.110983. |
[11] | Zhang X, Zhao Z, Wu Q, et al. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep, 2023, 42(3): 112177. doi:10.1016/j.celrep.2023.112177. |
[12] | Rubin EJ. The granuloma in tuberculosis—friend or foe?. N Engl J Med, 2009, 360(23): 2471-2473. doi:10.1056/NEJMcibr0902539. |
[13] | Scanga CA, Flynn JL. Modeling tuberculosis in nonhuman primates. Cold Spring Harb Perspect Med, 2014, 4(12): a018564. doi:10.1101/cshperspect.a018564. |
[14] |
Gideon HP, Hughes TK, Tzouanas CN, et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity, 2022, 55(5): 827-846.e10. doi:10.1016/j.immuni.2022.04.004.
pmid: 35483355 |
[15] | Hunter L, Ruedas-Torres I, Agulló-Ros I, et al. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci, 2023, 10: 1264833. doi:10.3389/fvets.2023.1264833. |
[16] | Williams A, Orme IM. Animal models of tuberculosis: an overview. Microbiol Spectr, 2016, 4(4). doi:10.1128/microbiolspec.TBTB2-0004-2015. |
[17] |
Alfaro JA, Bohländer P, Dai M, et al. The emerging landscape of single-molecule protein sequencing technologies. Nat Methods, 2021, 18(6): 604-617. doi:10.1038/s41592-021-01143-1.
pmid: 34099939 |
[18] | Pan J, Zhang X, Xu J, et al. Landscape of exhausted T cells in tuberculosis revealed by single-cell sequencing. Microbiol Spectr, 2023, 11(2): e02839-22. doi:10.1128/spectrum.02839-22. |
[19] | Jiang J, Cao Z, Li B, et al. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J Infect, 2024, 89(3): 106231. doi:10.1016/j.jinf.2024.106231. |
[20] | Jiang J, Cao Z, Xiao L, et al. Single-cell profiling identifies T cell subsets associated with control of tuberculosis dissemination. Clin Immunol, 2023, 248: 109266. doi:10.1016/j.clim.2023.109266. |
[21] | Pisu D, Huang L, Narang V, et al. Single cell analysis of M.tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med, 2021, 218(9): e20210615. doi:10.1084/jem.20210615. |
[22] | Gouzy A. Use of single-cell technology to improve our understanding of the role of TLR2 in macrophage-Mycobacterium tuberculosis interaction. mSystems, 2023, 8(5): e0073023. doi:10.1128/msystems.00730-23. |
[23] | Jani C, Solomon SL, Peters JM, et al. TLR2 is non-redundant in the population and subpopulation responses to Mycobacterium tuberculosis in macrophages and in vivo. mSystems, 2023, 8(4): e0005223. doi:10.1128/msystems.00052-23. |
[24] | Shekarkar Azgomi M, Badami GD, Lo Pizzo M, et al. Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data Reveals Memory-like NK Cell Subset Associated with Mycobacterium tuberculosis Latency. Cells, 2024, 13(4): 293. doi:10.3390/cells13040293. |
[25] | Cai Y, Dai Y, Wang Y, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis. EBioMedicine, 2020, 53: 102686. doi:10.1016/j.ebiom.2020.102686. |
[26] | Guo Q, Zhong Y, Wang Z, et al. Single-cell transcriptomic landscape identifies the expansion of peripheral blood monocytes as an indicator of HIV-1-TB co-infection. Cell Insight, 2022, 1(1): 100005. doi:10.1016/j.cellin.2022.100005. |
[27] |
Ahmad M, Ibrahim WH, Sarafandi SA, et al. Diagnostic value of bronchoalveolar lavage in the subset of patients with negative sputum/smear and mycobacterial culture and a suspicion of pulmonary tuberculosis. Int J Infect Dis, 2019, 82: 96-101. doi:10.1016/j.ijid.2019.03.021.
pmid: 30904678 |
[28] | Chen Q, Hu C, Lu W, et al. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing. J Biomed Res, 2022, 36(3): 167-180. doi:10.7555/JBR.36.20220007. |
[29] | Yang Q, Qi F, Ye T, et al. The interaction of macrophages and CD 8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect, 2023, 12(2): 2239940. doi:10.1080/22221751.2023.2239940. |
[30] | Xiao G, Huang W, Zhong Y, et al. Uncovering the Bronchoalveolar Single-Cell Landscape of Patients With Pulmonary Tuberculosis With Human Immunodeficiency Virus Type 1 Coinfection. J Infect Dis, 2024, 230(3): e524-e535. doi:10.1093/infdis/jiae042. |
[31] | McNally E, Ross C, Gleeson LE. The tuberculous pleural effusion. Breathe(Sheff), 2023, 19(4): 230143. doi:10.1183/20734735.0143-2023. |
[32] | Cai Y, Wang Y, Shi C, et al. Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. J Exp Med, 2022, 219(3): e20211777. doi:10.1084/jem.20211777. |
[33] | Yang X, Yan J, Xue Y, et al. Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE. Front Immunol, 2023, 14: 1191357. doi:10.3389/fimmu.2023.1191357. |
[34] | Mo S, Shi C, Cai Y, et al. Single-cell transcriptome reveals highly complement activated microglia cells in association with pediatric tuberculous meningitis. Front Immunol, 2024, 15: 1387808. doi:10.3389/fimmu.2024.1387808. |
[35] | Agashe VM, Johari AN, Shah M, et al. Diagnosis of osteoarticular tuberculosis: perceptions, protocols, practices, and priorities in the endemic and non-endemic areas of the World—A WAIOT view. Microorganisms, 2020, 8(9): 1312. doi:10.3390/microorganisms8091312. |
[36] |
Jiang Y, Zhang X, Wang B, et al. Single-cell transcriptomic analysis reveals a decrease in the frequency of macrophage-RGS1high subsets in patients with osteoarticular tuberculosis. Mol Med, 2024, 30(1): 118. doi:10.1186/s10020-024-00886-9.
pmid: 39123125 |
[37] | Mahmoudi S, García MJ, Drain PK. Current approaches for diagnosis of subclinical pulmonary tuberculosis, clinical implications and future perspectives: a scoping review. Exp Rev Clin Immunol, 2024, 20(7): 715-726. doi:10.1080/1744666X.2024.2326032. |
[38] | Kendall EA, Shrestha S, Dowdy DW. The epidemiological importance of subclinical tuberculosis. A critical reappraisal. Am J Respir Crit Care Med, 2021, 203(2): 168-174. doi:10.1164/rccm.202006-2394PP. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[2] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital Capital Medlical University/Beijing Tuberculosis and Thoracic Tumor Research Institute. Expert consensus on all-oral short-course therapy for drug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 830-839. |
[3] | Wang Jing, Wang Qingfeng, Jing Wei, Wang Yujin, Wang Xueyu, Huang Hairong, Chu Naihui, Nie Wenjuan. Dosage of recombinant Mycobacterium tuberculosis fusion protein for skin testing in the 18-65 year-old population and its safety in the 3-17 and 66-75 year-old populations: a randomized, blinded, positive-controlled phase Ⅱ clinical trial [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 840-845. |
[4] | Zhang Canyou, Xia Yinyin, Chen Hui, Zhao Fei, Wang Lixia, Zhang Hui, Cheng Jun. Community-based active case-finding for pulmonary tuberculosis in the elderly: analysis of strategies and effectiveness based on a multicenter cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 846-854. |
[5] | Zhong Yi, Yu Shengnan, Zhang Yuqi, Jing Rui, Li Xiujun. Analysis of public knowledge, attitude and practice on tuberculosis prevention and control based on Structural Equation Modeling [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 855-862. |
[6] | Zhou Fangjing, Liang Hongdi, Li Jianwei, Chen Yuhui, Wen Wenpei, Wu Huizhong. Assessment of the public awareness of core information on tuberculosis prevention and control in Guangdong Province based on a two-level model [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 863-869. |
[7] | Fan Jiangjing, Zhou Meng, Xu Zuhui, Zhang Chuanfang. Analysis of occupational satisfaction and associated factors among tuberculosis health management staff in primary healthcare institutions in Hunan Province [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 870-877. |
[8] | Yang Zeliang, Ma Zichun, Shang Yuanyuan, Shi Jin, Jing Wei, Pang Yu, Qin Lin. The diagnostic value of targeted next generation sequencing in sputum-free pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 878-883. |
[9] | Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. |
[10] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[11] | Wang Meiji, Liu Meijun, Chen Rui, Xia Lu, Liu Xuhui, Yang Yang, Liu Huarui, Ye Dan, Fei Zhentao, Xie Shiqi, Yang Shuqi, Pan Lei, Zhang Xiaolin, Xu Biao, Li Feng. Functional outcomes and predictors of tuberculous meningitis in children and young adolescents: a hospital-based retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 907-913. |
[12] | Wei Liuying, Jing Wei, Liu Zhifeng, Nie Wenjuan, Huang Xianzhen, Huang Lianpiao, Ban Fengting, Lin Yanrong, Yang Shixiong, Zhu Qingdong. Cost-effectiveness analysis of bedaquiline-containing regimens for the treatment of patients with multidrug/rifampicin-resistant pulmonary tuberculosis in Nanning: a retrospective cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 914-920. |
[13] | Yu Huimin, Zheng Hui, Liu Eryong, Huang Fei, Wu Dan, Yin Zundong. Research progress on immunization strategies for tuberculosis vaccines [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 930-939. |
[14] | Mao Lirong, Nie Yanhui, An Hongjuan, Wang Ruilan, Dong Enjun, Su Yue, Zhao Wenjuan, Du Jingli, An Huiru. Application efficacy and research progress of mass spectrometry detection technology in the diagnosis of osteotuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 940-946. |
[15] | Yao Xiuyu, Du Ying, Chen Sijie, Geng Hong, Gao Lei. Common nursing problems and countermeasures or suggestions for home isolation and treatment of patients with infectious pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 681-686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||