Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (4): 479-484.doi: 10.19982/j.issn.1000-6621.20230452
• Review Articles • Previous Articles Next Articles
Wen Shufang1, Wei Rongrong1, Li Haoran2, Liu Yi1()
Received:
2023-12-20
Online:
2024-04-10
Published:
2024-04-01
Contact:
Liu Yi
E-mail:liuyilotus@hotmail.com
CLC Number:
Wen Shufang, Wei Rongrong, Li Haoran, Liu Yi. The role of CD4+ and CD8+T cells in the immune response to tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(4): 479-484. doi: 10.19982/j.issn.1000-6621.20230452
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230452
[1] |
Patankar YR, Sutiwisesak R, Boyce S, et al. Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD 8 T cells from the lungs of infected mice. Mucosal Immunol, 2020, 13(1):140-148. doi:10.1038/s41385-019-0217-6.
pmid: 31636345 |
[2] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[3] | Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest, 2021, 131(3):e136222. doi:10.1172/JCI136222. |
[4] |
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol, 2021, 39:611-637. doi:10.1146/annurev-immunol-093019-010426.
pmid: 33637017 |
[5] | Rai PK, Chodisetti SB, Maurya SK, et al. A lipidated bi-epitope vaccine comprising of MHC-I and MHC-Ⅱ binder peptides elicits protective CD 4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis. J Transl Med, 2018, 16(1):279. doi:10.1186/s12967-018-1653-x. |
[6] | Feng D, Chen Y, Dai R, et al. Chromatin organizer SATB 1 controls the cell identity of CD4+ CD8+ double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun, 2022, 13(1):5554. doi:10.1038/s41467-022-33333-6. |
[7] | Lindestam Arlehamn CS, Lewinsohn D, Sette A, et al. Antigens for CD4 and CD 8 T cells in tuberculosis. Cold Spring Harb Perspect Med, 2014, 4(7):a018465. doi:10.1101/cshperspect.a018465. |
[8] | Swanson RV, Gupta A, Foreman TW, et al. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat Immunol, 2023, 24(5):855-868. doi:10.1038/s41590-023-01476-3. |
[9] | Wik JA, Skålhegg BS. T Cell Metabolism in Infection. Front Immunol, 2022, 13:840610. doi:10.3389/fimmu.2022.840610. |
[10] | Qin Y, Wang Q, Shi J. Immune checkpoint modulating T cells and NK cells response to Mycobacterium tuberculosis infection. Microbiol Res, 2023, 273:127393. doi:10.1016/j.micres.2023.127393. |
[11] |
Künzli M, Masopust D. CD4+ T cell memory. Nat Immunol, 2023, 24(6):903-914. doi:10.1038/s41590-023-01510-4.
pmid: 37156885 |
[12] |
Jasenosky LD, Scriba TJ, Hanekom WA, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev, 2015, 264(1):74-87. doi:10.1111/imr.12274.
pmid: 25703553 |
[13] | 闫亚如, 谢建平. 白细胞介素-1在巨噬细胞抗结核分枝杆菌免疫应答及代谢重编程的作用研究进展. 结核与肺部疾病杂志, 2023, 4(6):511-518. doi:10.19983/j.issn.2096-8493.20230108. |
[14] | 毕秀丽, 耿红, 金瑾. 髓系细胞和CD4+ T细胞在结核分枝杆菌感染和免疫病理中的作用. 中国防痨杂志, 2023, 45(9):904-912. doi:10.19982/j.issn.1000-6621.20230247. |
[15] | Gopal R, Monin L, Slight S, et al. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog, 2014, 10(5):e1004099. doi:10.1371/journal.ppat.1004099. |
[16] | Van Dis E, Fox DM, Morrison HM, et al. IFN-γ-independent control of M.tuberculosis requires CD 4 T cell-derived GM-CSF and activation of HIF-1α. PLoS Pathog, 2022, 18(7):e1010721. doi:10.1371/journal.ppat.1010721. |
[17] | 李浩然, 姚丛, 李珊珊, 等. 调节性T细胞在调控抗结核免疫过程中的研究进展. 中华结核和呼吸杂志, 2022, 45(5):502-509. doi:10.3760/cma.j.cn112147-20210830-00609. |
[18] | Musvosvi M, Huang H, Wang C, et al. T cell receptor repertoires associated with control and disease progression following Mycobacterium tuberculosis infection. Nat Med, 2023, 29(1):258-269. doi:10.1038/s41591-022-02110-9. |
[19] |
Sudbury EL, Clifford V, Messina NL, et al. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect, 2020, 81(6):873-881. doi:10.1016/j.jinf.2020.09.032.
pmid: 33007340 |
[20] | Verma D, Chan ED, Ordway DJ. The double-edged sword of Tregs in M tuberculosis, M avium, and M absessus infection. Immunol Rev, 2021, 301(1):48-61. doi:10.1111/imr.12959. |
[21] | Luo Y, Xue Y, Tang G, et al. Lymphocyte-Related Immunological Indicators for Stratifying Mycobacterium tuberculosis Infection. Front Immunol, 2021, 12:658843. doi:10.3389/fimmu.2021.658843. |
[22] | 李丽. 结核病细胞免疫特征研究进展. 中国免疫学杂志, 2017, 33(6): 955-958. doi:10.3969/j.issn.1000-484X.2017.06.032. |
[23] | Toulza F, Tsang L, Ottenhoff TH, et al. Mycobacterium tuberculosis-specific CD4+ T-cell response is increased, and Treg cells decreased, in anthelmintic-treated patients with latent TB. Eur J Immunol, 2016, 46(3):752-761. doi:10.1002/eji.201545843. |
[24] | Sinha S, Boyden AW, Itani FR, et al. CD8+ T-Cells as Immune Regulators of Multiple Sclerosis. Front Immunol, 2015, 6:619. doi:10.3389/fimmu.2015.00619. |
[25] | 李威, 刘军, 李慧明, 等. 外周血Treg/IL-17比值变化与肺结核的关系研究. 检验医学与临床, 2023, 20(11): 1519-1521. doi:10.3969/j.issn.1672-9455.2023.11.004. |
[26] | Ferreira CM, Barbosa AM, Barreira-Silva P, et al. Early IL-10 promotes vasculature-associated CD4+ T cells unable to control Mycobacterium tuberculosis infection. JCI Insight, 2021, 6(21):e150060. doi:10.1172/jci.insight.150060. |
[27] |
McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol, 2022, 23(2):318-329. doi:10.1038/s41590-021-01121-x.
pmid: 35058616 |
[28] |
Mwebaza I, Shaw R, Li Q, et al. Impact of Mycobacterium tuberculosis Glycolipids on the CD4+ T Cell-Macrophage Immunological Synapse. J Immunol, 2023, 211(9):1385-1396. doi:10.4049/jimmunol.2300107.
pmid: 37695687 |
[29] |
Khan N, Vidyarthi A, Amir M, et al. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol, 2017, 43(2):133-141. doi:10.1080/1040841X.2016.1185603.
pmid: 27800700 |
[30] | Day CL, Abrahams DA, Bunjun R, et al. PD-1 Expression on Mycobacterium tuberculosis-Specific CD 4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front Immunol, 2018, 9:1995. doi:10.3389/fimmu.2018.01995. |
[31] | Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9:e52668. doi:10.7554/eLife.52668. |
[32] |
Ogishi M, Yang R, Aytekin C, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med, 2021, 27(9):1646-1654. doi:10.1038/s41591-021-01388-5.
pmid: 34183838 |
[33] | Liu K, Wang D, Yao C, et al. Increased Tuberculosis Incidence Due to Immunotherapy Based on PD-1 and PD-L 1 Blockade: A Systematic Review and Meta-Analysis. Front Immunol, 2022, 13:727220. doi:10.3389/fimmu.2022.727220. |
[34] | Yang JD, Mott D, Sutiwisesak R, et al. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathog, 2018, 14(5):e1007060. doi:10.1371/journal.ppat.1007060. |
[35] | Cai Y, Wang Y, Shi C, et al. Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. J Exp Med, 2022, 219(3):e20211777. doi:10.1084/jem.20211777. |
[36] | Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020, 577(7788):95-102. doi:10.1038/s41586-019-1817-8. |
[37] | Yang Q, Qi F, Ye T, et al. The interaction of macrophages and CD 8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect, 2023, 12(2):2239940. doi:10.1080/22221751.2023.2239940. |
[38] | Lu YJ, Barreira-Silva P, Boyce S, et al. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep, 2021, 36(11):109696. doi:10.1016/j.celrep.2021.109696. |
[39] |
Prezzemolo T, Guggino G, La Manna MP, et al. Functional Signatures of Human CD4 and CD 8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol, 2014, 5:180. doi:10.3389/fimmu.2014.00180.
pmid: 24795723 |
[40] | Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol, 2020, 50:101431. doi:10.1016/j.smim.2020.101431. |
[41] |
Pomaznoy M, Kuan R, Lindvall M, et al. Quantitative and Qualitative Perturbations of CD8+ MAITs in Healthy Mycobacterium tuberculosis-Infected Individuals. Immunohorizons, 2020, 4(6):292-307. doi:10.4049/immunohorizons.2000031.
pmid: 32499216 |
[42] | 唐佩军, 吴妹英. 结核分枝杆菌感染免疫应答与免疫逃逸机制的研究进展. 结核病与肺部健康杂志, 2017, 6(2):181-186. doi:10.3969/j.issn.2095-3755.2017.02.022. |
[43] | Wik JA, Skålhegg BS. T Cell Metabolism in Infection. Front Immunol, 2022, 13:840610. doi:10.3389/fimmu.2022.840610. |
[44] | Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol, 2015, 37(3):239-249. doi:10.1007/s00281-015-0490-8. |
[45] | Thakur P, Sutiwisesak R, Lu YJ, et al. Use of the Human Granulysin Transgenic Mice To Evaluate the Role of Granulysin Expression by CD 8 T Cells in Immunity To Mycobacterium tuberculosis. mBio, 2022, 13(6):e0302022. doi:10.1128/mbio.03020-22. |
[46] | James CA, Xu Y, Aguilar MS, et al. CD4 and CD 8 co-receptors modulate functional avidity of CD1b-restricted T cells. Nat Commun, 2022, 13(1):78. doi:10.1038/s41467-021-27764-w. |
[47] |
Datta J, Berk E, Cintolo JA, et al. Rationale for a Multimodality Strategy to Enhance the Efficacy of Dendritic Cell-Based Cancer Immunotherapy. Front Immunol, 2015, 6:271. doi:10.3389/fimmu.2015.00271.
pmid: 26082780 |
[48] |
Wang Y, Sun Q, Zhang Y, et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect, 2023, 86(5):421-438. doi:10.1016/j.jinf.2023.03.020.
pmid: 37003521 |
[49] | Roy Chowdhury R, Valainis JR, Dubey M, et al. NK-like CD8+ γδ T cells are expanded in persistent Mycobacterium tuberculosis infection. Sci Immunol, 2023, 8(81):eade3525. doi:10.1126/sciimmunol.ade3525. |
[50] |
Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science, 2003, 300(5617):339-342. doi:10.1126/science.1083317.
pmid: 12690202 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||