Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (10): 997-1002.doi: 10.19982/j.issn.1000-6621.20230191
• Review Articles • Previous Articles Next Articles
Li Yue1, Xia Hui2, Li Machao1, Wang Ruibai1()
Received:
2023-06-05
Online:
2023-10-10
Published:
2023-10-07
Contact:
Wang Ruibai, Email: CLC Number:
Li Yue, Xia Hui, Li Machao, Wang Ruibai. 4-nitrobenzoic acid experiment of mycobacteria and research progress on its molecular mechanism of Mycobacterium differentiation[J]. Chinese Journal of Antituberculosis, 2023, 45(10): 997-1002. doi: 10.19982/j.issn.1000-6621.20230191
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230191
方法名称 | 基质类型 | 培养基 | PNB浓度 | 样本量 | 报告时间 |
---|---|---|---|---|---|
传统法 | 固体 | 罗氏培养基 | 500μg/ml | 100μl 10-1mg/ml | 28d |
PNB-MGIT | 液体 | BACTEC MGIT 960 | 500μg/ml | 1麦氏浊度, 1∶5稀释后接种500μl | 7~10d |
微量肉汤法 | Middlebrook 7H9 ( 10%OADC) | 200μg/ml | 10-3mg/ml,100μl接种 | 7~10d | |
PNB-7H10 | 固体 | Middlebrook 7H10 (10%OADC) | 500μg/ml | 1麦氏浊度,1∶100稀释后10μl接种 | 3~28d |
NRAp | 罗氏培养基(1000μg/ml KNO3) | 500μg/ml | 200μl痰液接种,1ml Griess显色 | 7~10d | |
分光光度计 | 代谢产物 | 水 | 0.001% | 20mg/ml | 8h |
LC-MS | 水 | 0.001% | 20mg/ml | 8h |
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[3] |
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis, 2016, 45:123-134. doi:10.1016/j.ijid.2016.03.006.
pmid: 26976549 |
[4] | Tsukamura M, Tsukamura S. Differentiation of Mycobacterium tuberculosis and Mycobacterium bovis by p-nitrobenzoic ACID sysceptibility. Tubercle, 1964, 45:64-65. doi:10.1016/s0041-3879(64)80091-x. |
[5] | Tsukamura M. The enzymatic reduction of p-nitrobenzoic acid by Mycobacterium tuberculosis avium. Kekkaku, 1954, 29(10): 388-418. |
[6] | Varma-Basil M, Kumar S, Yadav J, et al. A simple method to differentiate between Mycobacterium tuberculosis and Non-tuberculous mycobacteria directly on clinical specimens. Southeast Asian J Trop Med Public Health, 2007, 38(1):111-114. |
[7] | 中华医学会结核病科学会, 中国防痨协会, 中华医学会检验学会. 全国结核病细菌学检验规程. 北京: 中华医学会结核病科学会, 中国防痨协会, 中华医学会检验学会, 1984. |
[8] | 中国防痨协会基础专业委员会. 结核病诊断细菌学检验规程. 中国防痨杂志, 1996, 18(2): 127-134. |
[9] | 赵雁林, 逄宇. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015. |
[10] | 全国结核病流行病学抽样调查技术指导组, 全国结核病流行病学抽样调查办公室. 2000年全国结核病流行病学抽样调查报告. 中国防痨杂志, 2002, 24(2): 65-108. |
[11] |
Giampaglia CM, Martins MC, Chimara E, et al. Differentiation of Mycobacterium tuberculosis from other mycobacteria with ρ-nitrobenzoic acid using MGIT 960. Int J Tuberc Lung Dis, 2007, 11(7):803-807.
pmid: 17609058 |
[12] | 崔振玲, 王洁, 黄晓辰, 等. 微量液体培养法快速鉴别分枝杆菌. 中华预防医学杂志, 2011, 45(1): 17-20. doi:10.3760/cma.j.issn.0253-9624.2011.01.005. |
[13] |
Shakoor S, Ahsan T, Jabeen K, et al. Use of p-nitrobenzoic acid in 7H 10 agar for identification of Mycobacterium tuberculosis complex: a field study. Int J Tuberc Lung Dis, 2010, 14(12):1644-1646.
pmid: 21144253 |
[14] |
Imperiale BR, Morcillo NS, Palomino JC, et al. Predictive value of direct nitrate reductase assay and its clinical perfor-mance in the detection of multi- and extensively drug-resistant tuberculosis. J Med Microbiol, 2014, 63(Pt 4):522-527. doi:10.1099/jmm.0.070219-0.
pmid: 24445510 |
[15] |
Boum Y 2nd, Orikiriza P, Rojas-Ponce G, et al. Use of Colorimetric Culture Methods for Detection of Mycobacterium tuberculosis Complex Isolates from Sputum Samples in Resource-Limited Settings. J Clin Microbiol, 2013, 51(7):2273-2279. doi:10.1128/JCM.00749-13,
pmid: 23658270 |
[16] | Angeby KA, Klintz L, Hoffner SE. Rapid and Inexpensive Drug Susceptibility Testing of Mycobacterium tuberculosis with a Nitrate Reductase Assay. J Clin Microbiol, 2002, 40(2):553-555. doi:10.1128/JCM.40.2.553-555.2002. |
[17] | Wang G, Yu X, Liang Q, et al. Evaluation of a Simple in-House Test to Presumptively Differentiate Mycobacterium tuberculosis Complex from Nontuberculous Mycobacteria by Detection of p-Nitrobenzoic Acid Metabolites. PLoS One, 2013, 8(11):e80877. doi:10.1371/journal.pone.0080877. |
[18] | 魏国梅, 王桂荣, 姜广路, 等. 分光光度计鉴别结核与非结核分枝杆菌的研究. 继续医学教育, 2019, 33(4):133-135. doi:10.3969/j.issn.1004-6763.2019.04.074. |
[19] | 余旭良, 徐礼锋, 祝进, 等. 99株非结核分枝杆菌菌种鉴定和药敏结果分析. 中国卫生检验杂志, 2015, 25(20):3580-3582. |
[20] | 邓建平, 王斌, 白锐, 等. 2011—2018年四川省自贡市分枝杆菌临床分离株鉴定分析. 疾病监测, 2019, 34(4):338-343. doi:10.3784/j.issn.1003-9961.2019.04.013. |
[21] | 吴龙章, 潘美玉, 刘欣, 等. 结核分枝杆菌对对硝基苯甲酸耐药性的研究. 中华结核和呼吸杂志, 2011, 34(2):117-119. doi:10.3760/cma.j.issn.1001-0939.2011.02.012. |
[22] | Sharma B, Pal N, Malhotra B, et al. Evaluation of a Rapid Differentiation Test for Mycobacterium Tuberculosis from other Mycobacteria by Selective Inhibition with p-nitrobenzoic Acid using MGIT 960. J Lab Physicians, 2010, 2(2):89-92. doi:10.4103/0974-2727.72157. |
[23] |
Tsai CS. Nitroreductase activity of heart lipoamide dehydrogenase. Biochem J, 1987, 242(2):447-452. doi:10.1042/bj2420447.
pmid: 3593260 |
[24] |
Bauer SL, Howard PC. Kinetics and cofactor requirements for the nitroreductive metabolism of 1-nitropyrene and 3-nitrofluoranthene by rabbit liver aldehyde oxidase. Carcinogenesis, 1991, 12(9):1545-1549. doi:10.1093/carcin/12.9.1545.
pmid: 1893513 |
[25] | Rafii F, Cerniglia CE. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ Health Perspect, 1995, 103 Suppl 5(Suppl 5):17-19. doi:10.1289/ehp.95103s417. |
[26] |
Marcinkeviciene J, Blanchard JS. Catalytic Properties of Lipoamide Dehydrogenase from Mycobacterium smegmatis. Arch Biochem Biophys, 1997, 340(2):168-176. doi:10.1006/abbi.1997.9926.
pmid: 9143318 |
[27] | Tsai CS. Kinetic studies of multifunctional reactions catalysed by lipoamide dehydrogenase. Int J Biochem, 1980, 11(5):407-413. doi:10.1016/0020-711x(80)90311-0. |
[28] |
Rafii F, Hehman G, Lunsford P. Purification and characterization of an enzyme from Mycobacterium sp. Pyr-1, with nitroreductase activity and an N-terminal sequence similar to lipoamide dehydrogenase. Arch Microbiol, 2001, 176(5):381-385. doi:10.1007/s002030100337.
pmid: 11702081 |
[29] | Rafii F, Selby AL, Newton RK, et al. Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp [published correction appears in Appl Environ Microbiol 1995 Apr;61(4):1677]. Appl Environ Microbiol, 1994, 60(12):4263-4267. doi:10.1128/aem.60.12.4263-4267.1994. |
[30] | Rajashankar KR, Bryk R, Kniewel R, et al. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis. J Biol Chem, 2005, 280(40):33977-33983. doi:10.1074/jbc.M507466200. |
[31] |
Parkinson GN, Skelly JV, Neidle S. Crystal structure of FMN-dependent nitroreductase from Escherichia coli B: a prodrug-activating enzyme. J Med Chem, 2000, 43(20):3624-3631. doi:10.1021/jm000159m.
pmid: 11020276 |
[32] | Manina G, Bellinzoni M, Pasca MR, et al. Biological and structural characterization of the Mycobacterium smegmatis nitroreductase NfnB, and its role in benzothiazinone resistance. Mol Microbiol, 2010, 77(5):1172-1185. doi:10.1111/j.1365-2958.2010.07277.x. |
[33] | 丁朋举. 分枝杆菌系统进化及其硝基还原酶基因克隆表达. 郑州: 河南工业大学, 2013. |
[34] | 张福真. 分枝杆菌脱氮黄素依赖性硝基还原酶活化PA-824的关键位点鉴定. 广州: 南方医科大学, 2020. |
[35] |
Haver HL, Chua A, Ghode P, et al. Mutations in Genes for the F420 Biosynthetic Pathway and a Nitroreductase Enzyme Are the Primary Resistance Determinants in Spontaneous In Vitro-Selected PA-824-Resistant Mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015, 59(9):5316-5323. doi:10.1128/AAC.00308-15.
pmid: 26100695 |
[36] |
Cellitti SE, Shaffer J, Jones DH, et al. Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from Mycobacterium tuberculosis Involved in Bioreductive Activation of PA-824. Structure, 2013, 21(1):191. doi:10.1016/j.str.2012.12.012.
pmid: 28903033 |
[37] |
Taylor RM, Baniulis D, Burritt JB, et al. Analysis of Human Phagocyte Flavocytochrome b558 by Mass Spectrometry. J Biol Chem, 2006, 281(48):37045-37056. doi:10.1074/jbc.M607354200.
pmid: 17015440 |
[38] |
Albesa-Jové D, Chiarelli LR, Makarov V, et al. Rv2466c Mediates the Activation of TP 053 To Kill Replicating and Non-replicating Mycobacterium tuberculosis. ACS Chem Biol, 2014, 9(7):1567-1575. doi:10.1021/cb500149m.
pmid: 24877756 |
[39] | Chauviac FX, Bommer M, Yan J, et al. Crystal Structure of Reduced MsAcg, a Putative Nitroreductase from Mycobacterium smegmatis and a Close Homologue of Mycobacterium tuberculosis Acg. J Biol Chem, 2012, 287(53):44372-44383. doi:10.1074/jbc.M112.406264. |
[40] | Hu Y, Coates AR. Mycobacterium tuberculosis acg Gene Is Required for Growth and Virulence In Vivo. PLoS One, 2011, 6(6):e20958. doi:10.1371/journal.pone.0020958. |
[41] | Shiraz M, Lata S, Kumar P, et al. Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR. Infect Genet Evol, 2021, 94:105017. doi:10.1016/j.meegid.2021.105017. |
[42] | Peddireddy V, Doddam SN, Qureshi IA, et al. A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway. Sci Rep, 2016, 6:24535. doi:10.1038/srep24535. |
[43] |
Venugopal A, Bryk R, Shi S, et al. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe, 2011, 9(1):21-31. doi:10.1016/j.chom.2010.12.004.
pmid: 21238944 |
[44] |
Buchieri MV, Cimino M, Rebollo-Ramirez S, et al. Nitazo-xanide Analogs Require Nitroreduction For Antimicrobial Activity in Mycobacterium smegmatis. J Med Chem, 2017, 60(17):7425-7433. doi:10.1021/acs.jmedchem.7b00726.
pmid: 28846409 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||