Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (6): 566-574.doi: 10.19982/j.issn.1000-6621.20230059
• Original Articles • Previous Articles Next Articles
He Ping1, Wang Yiting1, Song Zexuan1, Xia Hui2, Wang Shengfen2, He Wencong1, Zheng Yang2, Zhao Yanlin2()
Received:
2023-03-01
Online:
2023-06-10
Published:
2023-06-06
Contact:
Zhao Yanlin
E-mail:zhaoyl@chinacdc.cn
Supported by:
CLC Number:
He Ping, Wang Yiting, Song Zexuan, Xia Hui, Wang Shengfen, He Wencong, Zheng Yang, Zhao Yanlin. Preliminary study on the gene function of Mycobacterium tuberculosis Rv2333c in macrophages[J]. Chinese Journal of Antituberculosis, 2023, 45(6): 566-574. doi: 10.19982/j.issn.1000-6621.20230059
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230059
细胞因子 时间(h) | 2-ΔΔCt值 | t值 | P值 | |
---|---|---|---|---|
Ms_Vec组 | Ms_Rv2333c组 | |||
IL-1β | ||||
6 | 657.43±20.96 | 521.36±25.97 | 5.767 | 0.005 |
24 | 292.69±3.23 | 454.56±24.57 | 9.237 | <0.001 |
48 | 1548.53±125.17 | 2168.13±130.00 | 4.855 | 0.008 |
IL-6 | ||||
6 | 2.46±0.49 | 6.02±0.37 | 8.234 | 0.001 |
24 | 490.14±55.19 | 4546.44±186.66 | 29.470 | <0.001 |
48 | 776.41±15.38 | 1642.76±51.15 | 22.940 | <0.001 |
IFN-γ | ||||
6 | 2.52±0.09 | 17.24±0.47 | 43.760 | <0.001 |
24 | 1.55±0.20 | 5.56±0.15 | 22.580 | <0.001 |
48 | 2.76±0.32 | 8.52±0.08 | 25.090 | <0.001 |
蛋白 时间(h) | 灰度值(%, 与GAPDH表达量相比较) | t值 | P值 | |
---|---|---|---|---|
Ms_Vec | Ms_Rv2333c | |||
NF-κB | ||||
3 | 1.00±0.14 | 1.85±0.29 | 3.765 | 0.020 |
6 | 1.00±0.20 | 1.82±0.19 | 4.176 | 0.014 |
12 | 1.00±0.11 | 1.37±0.11 | 3.442 | 0.026 |
24 | 1.00±0.14 | 1.45±0.15 | 3.041 | 0.038 |
p-ERK1/2 | ||||
3 | 1.00±0.06 | 1.74±0.03 | 15.040 | <0.001 |
6 | 1.00±0.03 | 1.36±0.03 | 11.740 | <0.001 |
12 | 1.00±0.05 | 1.22±0.07 | 3.857 | 0.018 |
24 | 1.00±0.02 | 1.17±0.04 | 5.538 | 0.005 |
[1] |
Shahi F, Khosravi AD, Tabandeh MR, et al. Investigation of the Rv3065, Rv2942, Rv1258c, Rv1410c, and Rv2459 efflux pump genes expression among multidrug-resistant Mycobacterium tuberculosis clinical isolates. Heliyon, 2021, 7(7): e07566. doi:10.1016/j.heliyon.2021.e07566.
doi: 10.1016/j.heliyon.2021.e07566 |
[2] |
Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol, 2018, 16(9): 523-539. doi:10.1038/s41579-018-0048-6.
doi: 10.1038/s41579-018-0048-6 pmid: 30002505 |
[3] |
Cohen SB, Gern BH, Delahaye JL, et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe, 2018, 24(3): 439-446. doi:10.1016/j.chom.2018.08.001.
doi: S1931-3128(18)30410-4 pmid: 30146391 |
[4] |
Simmons JD, Stein CM, Seshadri C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 2018, 18(9): 575-589. doi:10.1038/s41577-018-0025-3.
doi: 10.1038/s41577-018-0025-3 pmid: 29895826 |
[5] |
Ramon-Garcia S, Martin C, De Rossi E, et al. Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J Antimicrob Chemother, 2007, 59(3): 544-547. doi:10.1093/jac/dkl510.
doi: 10.1093/jac/dkl510 URL |
[6] |
Sen T, Neog K, Sarma S, et al. Efflux pump inhibition by 11H-pyrido[2,1-b]quinazolin-11-one analogues in mycobacteria. Bioorg Med Chem, 2018, 26(17): 4942-4951. doi:10.1016/j.bmc.2018.08.034.
doi: 10.1016/j.bmc.2018.08.034 |
[7] |
Rai D, Mehraa S. The Mycobacterial Efflux Pump EfpA Can Induce High Drug Tolerance to Many Antituberculosis Drugs, Including Moxifloxacin, in Mycobacterium smegmatis. Antimicrob Agents Chemother, 2021, 65(11): e0026221. doi:10.1128/AAC.00262-21.
doi: 10.1128/AAC.00262-21 |
[8] |
Stutz MD, Allison CC, Ojaimi S, et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity, 2021, 54(8): 1758-1771.e7. doi:10.1016/j.immuni.2021.06.009.
doi: 10.1016/j.immuni.2021.06.009 pmid: 34256013 |
[9] |
Master SS, Rampini SK, Davis AS, et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe, 2008, 3(4): 224-232. doi:10.1016/j.chom.2008.03.003.
doi: 10.1016/j.chom.2008.03.003 URL |
[10] |
Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494):eaa27548. doi:10.1126/science.aaz7548.
doi: 10.1126/science.aaz7548 |
[11] |
Chim N, Torres R, Liu Y, et al. The Structure and Interactions of Periplasmic Domains of Crucial MmpL Membrane Proteins from Mycobacterium tuberculosis. Chem Biol, 2015, 22(8): 1098-1107. doi:10.1016/j.chembiol.2015.07.013.
doi: 10.1016/j.chembiol.2015.07.013 URL |
[12] |
Radchenko M, Symersky J, Nie R, et al. Structural basis for the blockade of MATE multidrug efflux pumps. Nat Commun, 2015, 6: 7995. doi:10.1038/ncomms8995.
doi: 10.1038/ncomms8995 pmid: 26246409 |
[13] |
Bandyopadhyay U, Chadha A, Gupta P, et al. Suppression of Toll-like receptor 2-mediated proinflammatory responses by Mycobacterium tuberculosis protein Rv3529c. J Leukoc Biol, 2017, 102(5): 1249-1259. doi:10.1189/jlb.4A0217-042R.
doi: 10.1189/jlb.4A0217-042R URL |
[14] |
Piddock LJ. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol, 2006, 4(8): 629-636. doi:10.1038/nrmicro1464.
doi: 10.1038/nrmicro1464 pmid: 16845433 |
[15] |
Li G, Zhang J, Guo Q, et al. Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates. J Antibiot (Tokyo), 2015, 68(7): 431-435. doi:10.1038/ja.2015.9.
doi: 10.1038/ja.2015.9 |
[16] |
Howard NC, Marin ND, Ahmed M, et al. Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol, 2018, 3(10): 1099-1108. doi:10.1038/s41564-018-0245-0.
doi: 10.1038/s41564-018-0245-0 |
[17] |
Lovey A, Verma S, Kaipilyawar V, et al. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat Commun, 2022, 13(1): 884. doi:10.1038/s41467-022-28506-2.
doi: 10.1038/s41467-022-28506-2 |
[18] |
Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol, 2019, 12(3): 772-783. doi:10.1038/s41385-019-0147-3.
doi: 10.1038/s41385-019-0147-3 URL |
[19] |
Akter S, Chauhan KS, Dunlap MD, et al. Mycobacterium tuberculosis infection drives a type Ⅰ IFN signature in lung lymphocytes. Cell Rep, 2022, 39(12): 110983. doi:10.1016/j.celrep.2022.110983.
doi: 10.1016/j.celrep.2022.110983 |
[20] |
Gutierrez MG, Mishra BB, Jordao L, et al. NF-kappa B activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J Immunol, 2008, 181(4): 2651-2663. doi:10.4049/jimmunol.181.4.2651.
doi: 10.4049/jimmunol.181.4.2651 pmid: 18684956 |
[21] |
Mele F, Basso C, Leoni C, et al. ERK phosphorylation and miR-181a expression modulate activation of human memory TH17 cells. Nat Commun, 2015, 6: 6431. doi:10.1038/ncomms7431.
doi: 10.1038/ncomms7431 pmid: 25775432 |
[22] |
Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe, 2008, 3(6): 399-407. doi:10.1016/j.chom.2008.05.006.
doi: 10.1016/j.chom.2008.05.006 pmid: 18541216 |
[23] |
Lucas RM, Liu L, Curson JEB, et al. SCIMP is a spatiotemporal transmembrane scaffold for Erk1/ 2 to direct pro-inflammatory signaling in TLR-activated macrophages. Cell Rep, 2021, 36(10): 109662. doi:10.1016/j.celrep.2021.109662.
doi: 10.1016/j.celrep.2021.109662 |
[24] |
Prieto P, Cuenca J, Traves P, et al. Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ, 2010, 17(7): 1179-1188. doi:10.1038/cdd.2009.220.
doi: 10.1038/cdd.2009.220 pmid: 20094061 |
[25] |
Lorenz K, Schmitt JP, Schmittecker EM, et al. A new type of ERK1/ 2 autophosphorylation causes cardiac hypertrophy. Nat Med, 2009, 15(1): 75-83. doi:10.1038/nm.1893.
doi: 10.1038/nm.1893 |
[26] |
Qiang L, Zhang Y, Liu CH. Mycobacterium tuberculosis effector proteins: functional multiplicity and regulatory diversity. Cell Mol Immunol, 2021, 18(5): 1343-1344. doi:10.1038/s41423-021-00676-x.
doi: 10.1038/s41423-021-00676-x |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||