Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (4): 391-400.doi: 10.19982/j.issn.1000-6621.20220525
• Original Articles • Previous Articles Next Articles
Duan Yuheng, Zhang Lanyue, Dong Jing, Shi Yuting, Jia Hongyan, Li Zihui, Xing Aiying, Du Boping, Sun Qi, Pan Liping, Zhu Chuanzhi(), Zhang Zongde(
)
Received:
2023-01-10
Online:
2023-04-10
Published:
2023-03-31
Contact:
Zhu Chuanzhi Email:chuanzhizhu@gmail.com; Zhang Zongde Email:zzd417@163.com
Supported by:
CLC Number:
Duan Yuheng, Zhang Lanyue, Dong Jing, Shi Yuting, Jia Hongyan, Li Zihui, Xing Aiying, Du Boping, Sun Qi, Pan Liping, Zhu Chuanzhi, Zhang Zongde. Effects of acetyltransferase fadA3 on acetylation of host protein and in vivo survival of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(4): 391-400. doi: 10.19982/j.issn.1000-6621.20220525
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220525
GO地址 | 聚类名称 | 富集基因数 (个) | 构成比 (%) | Q值 |
---|---|---|---|---|
分子功能分析 | ||||
GO:0005125 | 细胞因子活性(cytokine activity) | 12 | 5 | <0.001 |
GO:0008009 | 趋化因子活性(chemokine activity) | 6 | 12 | <0.001 |
GO:0048248 | CXCR3趋化因子受体结合(CXCR3 chemokine receptor binding) | 3 | 60 | <0.001 |
GO:0045236 | CXCR趋化因子受体结合(CXCR chemokine receptor binding) | 3 | 20 | 0.004 |
GO:0008201 | 肝素结合(heparin binding) | 7 | 4 | 0.004 |
GO:0004992 | 血小板活化因子受体活性(platelet activating factor receptor activity) | 2 | 50 | 0.008 |
GO:0031727 | CCR2趋化因子受体结合(CCR2 chemokine receptor binding) | 2 | 33 | 0.017 |
GO:0048020 | CCR趋化因子受体结合(CCR chemokine receptor binding) | 3 | 10 | 0.020 |
生物进程分析 | ||||
GO:0060337 | Ⅰ型干扰素信号通路(type Ⅰ interferon signaling pathway) | 11 | 16 | <0.001 |
GO:0006955 | 免疫应答(immune response) | 18 | 5 | <0.001 |
GO:0002376 | 免疫系统进程(immune system process) | 20 | 4 | <0.001 |
GO:0045071 | 病毒基因组复制的负调控(negative regulation of viral genome replication) | 8 | 18 | <0.001 |
GO:0045087 | 先天免疫反应(innate immune response) | 18 | 4 | <0.001 |
GO:0070098 | 细胞因子介导信号通路(cytokine-mediated signaling pathway) | 8 | 11 | <0.001 |
GO:0006935 | 趋化作用(chemotaxis) | 10 | 6 | <0.001 |
GO:0006954 | 炎症应答(inflammatory response) | 13 | 3 | <0.001 |
GO:0009617 | 细菌反应(response to bacterium) | 7 | 6 | <0.001 |
GO:0030593 | 中性粒细胞趋化性(neutrophil chemotaxis) | 6 | 7 | <0.001 |
细胞组分分析 | ||||
GO:0005576 | 胞外区域(extracellular region) | 29 | 1 | 0.001 |
GO:0005634 | 细胞外隙(extracellular space) | 22 | 1 | 0.002 |
通路编码 | 通路名称 | 富集基因数 (个) | 构成比 (%) | Q值 |
---|---|---|---|---|
hsa04061 | 病毒蛋白与细胞因子和细胞因子受体的相互作用(viral protein interaction with cytokine and cytokine receptor) | 10 | 10 | <0.001 |
hsa04060 | 细胞因子-细胞因子受体相互作用(cytokine-cytokine receptor interaction) | 15 | 5 | <0.001 |
hsa05160 | 丙型病毒性肝炎(hepatitis C) | 8 | 5 | 0.001 |
hsa05164 | 甲型流感病毒(influenza A) | 8 | 5 | 0.002 |
hsa04062 | 趋化因子信号通路(chemokine signaling pathway) | 8 | 4 | 0.003 |
hsa04620 | Toll样受体信号通路(Toll-like receptor signaling pathway) | 5 | 5 | 0.027 |
hsa04623 | 胞质DNA传感途径(cytosolic DNA-sensing pathway) | 4 | 6 | 0.028 |
hsa04622 | RIG-Ⅰ样受体信号通路(RIG-Ⅰ-like receptor signaling pathway) | 4 | 6 | 0.036 |
hsa04621 | NOD样受体信号通路(NOD-like receptor signaling pathway) | 6 | 3 | 0.042 |
[1] |
Kilinç G, Saris A, Ottenhoff THM, et al. Host-directed therapy to combat mycobacterial infections. Immunol Rev, 2021, 301(1):62-83. doi:10.1111/imr.12951.
doi: 10.1111/imr.12951 pmid: 33565103 |
[2] |
Budzik JM, Swaney DL, Jimenez-Morales D, et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. ELife, 2020, 9:e51461. doi:10.7554/eLife.51461.
doi: 10.7554/eLife.51461 URL |
[3] |
Chandran A, Antony C, Jose L, et al. Mycobacterium tuberculosis Infection Induces HDAC1-Mediated Suppression of IL-12B Gene Expression in Macrophages. Front Cell Infect Microbiol, 2015, 5: 90. doi:10.3389/fcimb.2015.00090.
doi: 10.3389/fcimb.2015.00090 |
[4] |
Wang Y, Curry HM, Zwilling BS, et al. Mycobacteria inhibition of IFN-gamma induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells. J Immunol, 2005, 174(9): 5687-5694. doi:10.4049/jimmunol.174.9.5687.
doi: 10.4049/jimmunol.174.9.5687 pmid: 15843570 |
[5] |
Zhu C, Cai Y, Zhu J, et al. Histone deacetylase inhibitors impair the host immune response against Mycobacterium tuberculosis infection. Tuberculosis (Edinb), 2019, 118: 101861. doi:10.1016/j.tube.2019.101861.
doi: 10.1016/j.tube.2019.101861 URL |
[6] |
Duan L, Yi M, Chen J, et al. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem Biophys Res Commun, 2016, 473(4): 1229-1234. doi:10.1016/j.bbrc.2016.04.045.
doi: 10.1016/j.bbrc.2016.04.045 URL |
[7] |
Jose L, Ramachandran R, Bhagavat R, et al. Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. FEBS J, 2016, 283(2): 265-281. doi:10.1111/febs.13566.
doi: 10.1111/febs.13566 URL |
[8] |
Målen H, Berven FS, Fladmark KE, et al. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics, 2007, 7(10): 1702-1718. doi:10.1002/pmic.200600853.
doi: 10.1002/pmic.200600853 pmid: 17443846 |
[9] |
Yan MY, Li SS, Ding XY, et al. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. MBio, 2020, 11(1): e02364-19. doi:10.1128/mBio.02364-19.
doi: 10.1128/mBio.02364-19 |
[10] |
朱国峰, 刘晓清. 结核病比较免疫学时代的机遇和挑战. 结核与肺部疾病杂志, 2020, 1(3): 195-212. doi:10.3969/j.issn.2096-8493.2020.03.002.
doi: 10.3969/j.issn.2096-8493.2020.03.002 |
[11] |
Zhang LY, Wang CL, Yan MY, et al. Toxin-Antitoxin Systems Alter Adaptation of Mycobacterium smegmatis to Environmental Stress. Microbiol Spectr, 2022, 10(6):e0281522. doi:10.1128/spectrum.02815-22.
doi: 10.1128/spectrum.02815-22 |
[12] |
Gu S, Chen J, Dobos KM, et al. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics, 2003, 2(12): 1284-1296. doi:10.1074/mcp.M300060-MCP200.
doi: 10.1074/mcp.M300060-MCP200 URL |
[13] |
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 2006, 23(4): 607-618. doi:10.1016/j.molcel.2006.06.026.
doi: 10.1016/j.molcel.2006.06.026 pmid: 16916647 |
[14] |
Arun KB, Madhavan A, Abraham B, et al. Acetylation of Isoniazid Is a Novel Mechanism of Isoniazid Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2020, 65(1): e00456-20. doi:10.1128/AAC.00456-20.
doi: 10.1128/AAC.00456-20 |
[15] |
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol, 2018, 4(3): 482-501. doi:10.3934/microbiol.2018.3.482.
doi: 10.3934/microbiol.2018.3.482 pmid: 31294229 |
[16] |
Schwarz S, Kehrenberg C, Doublet B, et al. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev, 2004, 28(5): 519-542. doi:10.1016/j.femsre.2004.04.001.
doi: 10.1016/j.femsre.2004.04.001 pmid: 15539072 |
[17] |
Anand C, Santoshi M, Singh PR, et al. Rv0802c is an acyltransferase that succinylates and acetylates Mycobacterium tuberculosis nucleoid-associated protein HU. Microbiology (Reading), 2021, 167(7):001058. doi:10.1099/mic.0.001058.
doi: 10.1099/mic.0.001058 |
[18] |
Yang H, Sha W, Liu Z, et al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect, 2018, 7(1): 34. doi:10.1038/s41426-018-0032-2.
doi: 10.1038/s41426-018-0032-2 |
[19] |
Sharma A, Kumar A, Rashid M, et al. A Phagosomally Expressed Gene, rv0428c, of Mycobacterium tuberculosis Demonstrates Acetyl Transferase Activity and Plays a Protective Role Under Stress Conditions. Protein J, 2022, 41(2): 260-273. doi:10.1007/s10930-022-10044-x.
doi: 10.1007/s10930-022-10044-x |
[20] |
Yang H, Wang F, Guo X, et al. Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov, 2021, 7(1): 90. doi:10.1038/s41421-021-00301-1.
doi: 10.1038/s41421-021-00301-1 pmid: 34608123 |
[21] |
Rosenkrands I, King A, Weldingh K, et al. Towards the proteome of Mycobacterium tuberculosis. Electrophoresis, 2000, 21(17): 3740-3756. doi:10.1002/1522-2683(200011)21:17<3740::AID-ELPS3740>3.0.CO;2-3.
doi: 10.1002/1522-2683(200011)21:17<3740::AID-ELPS3740>3.0.CO;2-3 pmid: 11271494 |
[22] |
Schaefer CM, Lu R, Nesbitt NM, et al. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure, 2015, 23(1): 21-33. doi:10.1016/j.str.2014.10.010.
doi: 10.1016/j.str.2014.10.010 URL |
[23] |
Jaiswal AK, Husaini SHA, Kumar A, et al. Designing novel inhibitors against Mycobacterium tuberculosis FadA 5 (acetyl-CoA acetyltransferase) by virtual screening of known anti-tuberculosis (bioactive) compounds. Bioinformation, 2018, 14(6): 327-336. doi:10.6026/97320630014327.
doi: 10.6026/97320630014327 pmid: 30237678 |
[24] |
Sandhu P, Kumari M, Naini K, et al. Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet, 2017, 63(3): 553-576. doi:10.1007/s00294-016-0664-5.
doi: 10.1007/s00294-016-0664-5 URL |
[25] |
De Souza GA, Leversen NA, Målen H, et al. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics, 2011, 75(2): 502-510. doi:10.1016/j.jprot.2011.08.016.
doi: 10.1016/j.jprot.2011.08.016 pmid: 21920479 |
[26] |
Chai Q, Wang L, Liu CH, et al. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol, 2020, 17(9): 901-913. doi:10.1038/s41423-020-0502-z.
doi: 10.1038/s41423-020-0502-z |
[27] |
Novita BD, Tjahjono Y, Wijaya S, et al. Characterization of chemokine and cytokine expression pattern in tuberculous lymphadenitis patient. Front Immunol, 2022, 13: 983269. doi:10.3389/fimmu.2022.983269.
doi: 10.3389/fimmu.2022.983269 URL |
[28] |
Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev, 2011, 240(1): 92-104. doi:10.1111/j.1600-065X.2010.00995.x.
doi: 10.1111/j.1600-065X.2010.00995.x pmid: 21349088 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[8] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[9] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[10] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[11] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[12] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[13] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[14] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[15] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||