Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (8): 849-854.doi: 10.19982/j.issn.1000-6621.20220060
• Original Articles • Previous Articles Next Articles
Li Yinhong1,2, Liu Fanglin1, Lu Zhenhui3(), Jiang Xin1(
)
Received:
2022-03-03
Online:
2022-08-10
Published:
2022-08-03
Contact:
Lu Zhenhui,Jiang Xin
E-mail:tcmdoctorlu@163.com;jiangxingao@163.com
Supported by:
CLC Number:
Li Yinhong, Liu Fanglin, Lu Zhenhui, Jiang Xin. Study on the mechanism of Oridonin against pathological damage of tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(8): 849-854. doi: 10.19982/j.issn.1000-6621.20220060
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220060
组别 | Bip蛋白相对 灰度值( | CHOP蛋白相对 灰度值( | peIF2α蛋白相对 灰度值( | IRE1α蛋白相对 灰度值( | pIRE1α蛋白相对 灰度值( |
---|---|---|---|---|---|
空白组 | 1.02±0.09 | 1.02±0.12 | 0.99±0.06 | 1.07±0.07 | 0.94±0.07 |
模型组(6h) | 2.27±0.07a | 1.93±0.08a | 1.75±0.03a | 14.19±0.45a | 5.68±0.19a |
模型组(12h) | 2.28±0.17a | 3.86±0.32a | 2.45±0.17a | 15.76±1.27a | 7.29±0.41a |
模型组(24h) | 3.68±0.07a | 13.02±0.41a | 2.41±0.15a | 15.39±0.88a | 9.45±0.36a |
冬凌草甲素(6h) | 1.85±0.07b | 1.03±0.01b | 1.75±0.42b | 10.48±0.40b | 5.22±0.27 |
冬凌草甲素(12h) | 0.97±0.03c | 3.49±0.09c | 1.31±0.04c | 6.15±0.15c | 4.10±0.08c |
冬凌草甲素(24h) | 2.11±0.17d | 6.44±0.24d | 0.75±0.03d | 10.47±0.36d | 7.23±0.13d |
F值 | 149.510 | 146.073 | 10.489 | 10.294 | 53.538 |
P值 | 0.000 | 0.000 | 0.002 | 0.002 | 0.000 |
组别 | pp65蛋白相对 灰度值( | pJNK蛋白相对 灰度值( | pp38蛋白相对 灰度值( |
---|---|---|---|
空白组 | 1.00±0.06 | 1.01±0.12 | 0.98±0.08 |
模型组(6h) | 1.07±0.03 | 666.00±31.32a | 1.63±0.09a |
模型组(12h) | 0.39±0.02a | 471.80±29.38a | 1.53±0.11a |
模型组(24h) | 0.89±0.06 | 334.70±25.68a | 593.10±52.74a |
冬凌草甲素(6h) | 0.69±0.01b | 296.70±10.14b | 6.82±0.27b |
冬凌草甲素(12h) | 0.28±0.01c | 46.05±0.86c | 1.17±0.08c |
冬凌草甲素(24h) | 0.81±0.00 | 38.74±1.12d | 244.4±4.72d |
F值 | 288.194 | 287.059 | 285.140 |
P值 | 0.000 | 0.000 | 0.000 |
[1] |
Amodio G, Pagliara V, Moltedo O, et al. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria-ER Contacts: A Cancer Perspective. Front Cell Dev Biol, 2021, 9: 641194. doi: 10.3389/fcell.2021.641194.
doi: 10.3389/fcell.2021.641194 URL |
[2] |
Forney LA, Stone KP, Wanders D, et al. Sensing and signaling mechanisms linking dietary methionine restriction to the behavioral and physiological components of the response. Front Neuroendocrinol, 2018, 51: 36-45. doi: 10.1016/j.yfrne.2017.12.002.
doi: 10.1016/j.yfrne.2017.12.002 URL |
[3] |
Hwang J, Suh HW, Jeon YH, et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun, 2014, 5: 2958. doi: 10.1038/ncomms3958.
doi: 10.1038/ncomms3958 URL |
[4] |
Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP 3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009, 183(2): 787-791. doi: 10.4049/jimmunol.0901363.
doi: 10.4049/jimmunol.0901363 pmid: 19570822 |
[5] |
Kim S, Joe Y, Jeong SO, et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1beta production via activation of the NF-kappaB and inflammasome pathways. Innate Immun, 2014, 20(8): 799-815. doi: 10.1177/1753425913508593.
doi: 10.1177/1753425913508593 URL |
[6] |
Sachan M, Srivastava A, Ranjan R, et al. Opportunities and Challenges for Host-Directed Therapies in Tuberculosis. Curr Pharm Des, 2016, 22(17): 2599-2604. doi: 10.2174/1381612822666160128150636.
doi: 10.2174/1381612822666160128150636 URL |
[7] |
Kolloli A, Subbian S. Host-Directed Therapeutic Strategies for Tuberculosis. Front Med (Lausanne), 2017, 4: 171. doi: 10.3389/fmed.2017.00171.
doi: 10.3389/fmed.2017.00171 |
[8] |
马征, 胡春生, 张莹莹. 冬凌草水提物治疗慢性咽炎的临床疗效及其安全性初步研究. 中南大学学报, 2011, 36(2): 170-173. doi: 10.3969/j.issn.1672-7347.2011.02.014.
doi: 10.3969/j.issn.1672-7347.2011.02.014 |
[9] |
Ding Y, Ding C, Ye N, et al. Discovery and development of natural product oridonin-inspired anticancer agents. Eur J Med Chem, 2016, 122: 102-117. doi: 10.1016/j.ejmech.2016.06.015.
doi: S0223-5234(16)30493-7 pmid: 27344488 |
[10] |
He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP 3 inhibitor with strong anti-inflammasome activity. Nat Commun, 2018, 9(1): 2550. doi: 10.1038/s41467-018-04947-6.
doi: 10.1038/s41467-018-04947-6 URL |
[11] |
曾庆钟, 刘颖, 郐一贺, 等. 冬凌草甲素对小鼠溃疡性结肠炎内质网应激的作用研究. 重庆医学, 2018, 47(17): 2261-2265. doi: 10.3969/j.issn.1671-8348.2018.17.003.
doi: 10.3969/j.issn.1671-8348.2018.17.003 |
[12] |
宋发军, 吴士筠, 梁建军. 巴东冬凌草的抗菌活性研究. 中南民族大学学报(自然科学版), 2004, 23(4): 9-11. doi: 10.3969/j.issn.1672-4321.2004.04.003.
doi: 10.3969/j.issn.1672-4321.2004.04.003 |
[13] |
Xu Y, Xue Y, Wang Y, et al. Multiple-modulation effects of Oridonin on the production of proinflammatory cytokines and neurotrophic factors in LPS-activated microglia. Int Immunopharmacol, 2009, 9(3): 360-365. doi: 10.1016/j.intimp.2009.01.002.
doi: 10.1016/j.intimp.2009.01.002 URL |
[14] |
Mishra BB, Moura-Alves P, Sonawane A, et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol, 2010, 12(8): 1046-1063. doi: 10.1111/j.1462-5822.2010.01450.x.
doi: 10.1111/j.1462-5822.2010.01450.x URL |
[15] |
Wong KW, Jacobs WR Jr. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol, 2011, 13(9): 1371-1384. doi: 10.1111/j.1462-5822.2011.01625.x.
doi: 10.1111/j.1462-5822.2011.01625.x URL |
[16] |
Dorhoi A, Nouailles G, Jörg S, et al. Activation of the NLRP 3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol, 2012, 42(2): 374-384. doi: 10.1002/eji.201141548.
doi: 10.1002/eji.201141548 pmid: 22101787 |
[17] |
Abais JM, Xia M, Li G, et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J Biol Chem, 2014, 289(39): 27159-27168. doi: 10.1074/jbc.M114.567537.
doi: 10.1074/jbc.M114.567537 URL |
[18] |
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010, 11(2): 136-140. doi: 10.1038/ni.1831.
doi: 10.1038/ni.1831 URL |
[19] |
Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol, 2018, 16: 32-46. doi: 10.1016/j.redox.2018.02.013.
doi: 10.1016/j.redox.2018.02.013 URL |
[20] |
Oslowski CM, Hara T, O’Sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab, 2012, 16(2): 265-273. doi: 10.1016/j.cmet.2012.07.005.
doi: 10.1016/j.cmet.2012.07.005 URL |
[21] |
Lim YJ, Choi JA, Choi HH, et al. Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS One, 2011, 6(12): e28531. doi: 10.1371/journal.pone.0028531.
doi: 10.1371/journal.pone.0028531 URL |
[22] |
Song C, Wang Y, Cui L, et al. Triptolide attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: involvement of NF-kappaB pathway. BMC Complement Altern Med, 2019, 19(1): 198. doi: 10.1186/s12906-019-2616-3.
doi: 10.1186/s12906-019-2616-3 URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||