Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (9): 939-946.doi: 10.3969/j.issn.1000-6621.2021.09.014
• Original Articles • Previous Articles Next Articles
YI Yi-hang, YU Rong, SHI Guo-min, MA Xiao-hua, XIAO Si-fang, SHUI Jian, FAN Ren-hua, XIANG Yan-gen()
Received:
2021-05-31
Online:
2021-09-10
Published:
2021-09-07
Contact:
XIANG Yan-gen
E-mail:xiangyangen@126.com
YI Yi-hang, YU Rong, SHI Guo-min, MA Xiao-hua, XIAO Si-fang, SHUI Jian, FAN Ren-hua, XIANG Yan-gen. Analysis of the composition and phenotypes of intestinal flora in primary bacteriologically-confirmed pulmonary tuberculosis patients based on high-throughput sequencing of 16S rRNA V4 region[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 939-946. doi: 10.3969/j.issn.1000-6621.2021.09.014
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.09.014
指标 | 肺结核组 | 对照组 | 统计检验值 | P值 |
---|---|---|---|---|
年龄(岁, | 42.55±10.13 | 43.21±10.35 | t=0.244 | 0.808 |
性别 | χ2=0.211 | 0.710 | ||
男性(例/名) | 9 | 10 | ||
女性(例/名) | 20 | 18 | ||
BMI( | 20.92±1.46 | 21.00±1.46 | t=-0.224 | 0.703 |
TG[mmol/L,M(Q1,Q3)] | 1.35(1.14,1.55) | 1.26(0.92,1.53) | Z=1.188 | 0.240 |
TC (mmol/L, | 3.86±0.66 | 4.90±0.71 | t=-5.735 | 0.000 |
HDL (mmol/L, | 1.07±0.32 | 1.57±0.35 | t=-5.557 | 0.000 |
LDL (mmol/L, | 2.23±0.54 | 2.75±0.65 | t=-3.234 | 0.002 |
HDL/LDL( | 0.53±0.24 | 0.61±0.25 | t=-1.251 | 0.216 |
属水平 | 相对丰度(%) | Z值 | P值 | |
---|---|---|---|---|
肺结核组 | 对照组 | |||
双歧杆菌属 | 0.08 | 0.09 | -2.270 | 0.023 |
副拟杆菌属 | 0.67 | 0.37 | -1.963 | 0.050 |
臭杆菌属 | 0.04 | 0.06 | -2.149 | 0.032 |
梭状芽孢杆菌属 | 0.03 | 0.08 | -4.031 | 0.000 |
Anaerostipes | 0.07 | 0.03 | -2.944 | 0.003 |
劳特氏菌属 | 0.15 | 0.21 | -2.339 | 0.019 |
粪球菌属 | 0.08 | 0.32 | -4.039 | 0.000 |
毛螺菌属 | 0.52 | 1.62 | -4.039 | 0.000 |
罗氏菌属 | 0.28 | 1.01 | -3.816 | 0.000 |
粪杆菌属 | 1.09 | 1.32 | -2.235 | 0.025 |
瘤胃球菌属 | 0.28 | 0.57 | -2.969 | 0.003 |
真杆菌属 | 0.94 | 0.01 | -2.077 | 0.038 |
[1] | World Health Organization. Global tuberculosis report 2020. Geneva:World Health Organization, 2020. |
[2] |
O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep, 2006, 7(7):688-693. doi: 10.1038/sj.embor.7400731.
doi: 10.1038/sj.embor.7400731 URL |
[3] |
Winglee K, Eloefadrosh EA, Gupta S, et al. Aerosol Mycobacterium tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLoS One, 2014, 9(5):e97048. doi: 10.1371/journal.pone.0097048.
doi: 10.1371/journal.pone.0097048 URL |
[4] |
Negi S, Pahari S, Bashir H, et al. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Front Immunol, 2019, 10(14):1142. doi: 10.3389/fimmu.2019.01142.
doi: 10.3389/fimmu.2019.01142 URL |
[5] |
Namasivayam S, Kauffman KD, McCulloch JA, et al. Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques. mBio, 2019, 10(3):e01018-e01019. doi: 10.1128/mBio.01018-19.
doi: 10.1128/mBio.01018-19 |
[6] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[7] |
Shi N, Li N, Duan X, et al. Interaction between the gut microbiome and mucosal immune system(Review). Mil Med Res, 2017, 4:14. doi: 10.1186/s40779-017-0122-9.
doi: 10.1186/s40779-017-0122-9 pmid: 28465831 |
[8] |
Gao X, Cao Q, Cheng Y, et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci USA, 2018, 115(13):E2960-E2969. doi: 10.1073/pnas.1720696115.
doi: 10.1073/pnas.1720696115 URL |
[9] |
Wu J, Liu W, He L, et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One, 2013, 8(12):e83445. doi: 10.1371/journal.pone.0083445.
doi: 10.1371/journal.pone.0083445 URL |
[10] |
Grigor’eva IN. Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. J Pers Med, 2020, 11(1):13. doi: 10.3390/jpm11010013.
doi: 10.3390/jpm11010013 URL |
[11] |
Zhong H, Penders J, Shi Z, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome, 2019, 7(1):2. doi: 10.1186/s40168-018-0608-z.
doi: 10.1186/s40168-018-0608-z URL |
[12] |
Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep, 2019, 9(1):287. doi: 10.1038/s41598-018-36430-z.
doi: 10.1038/s41598-018-36430-z URL |
[13] |
Vieira AT, Rocha VM, Tavares L, et al. Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 5(1A). Microbes Infec, 2016, 18(3):180-189. doi: 10.1016/j.micinf.2015.10.008.
doi: 10.1016/j.micinf.2015.10.008 URL |
[14] |
Mendes E, Acetturi BG, Thomas AM, et al. Prophylactic Supplementation of Bifidobacterium longum 51A Protects Mice from Ovariectomy-Induced Exacerbated Allergic Airway Inflammation and Airway Hyperresponsiveness. Front Microbiol, 2017, 8:1732. doi: 10.3389/fmicb.2017.01732.
doi: 10.3389/fmicb.2017.01732 URL |
[15] |
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor deve-lopment through modulating Wnt signaling and gut microbiota. Cancer Lett, 2020, 469:456-467. doi: 10.1016/j.canlet.2019.11.019.
doi: 10.1016/j.canlet.2019.11.019 URL |
[16] |
余今菁, 李欢, 胡邱宇, 等. 基于高通量测序技术的溃疡性结肠炎患者肠道菌群多样性研究. 华中科技大学学报(医学版), 2018, 47(4):460-465. doi: 10.3870/j.issn.1672-0741.2018.
doi: 10.3870/j.issn.1672-0741.2018 |
[17] |
Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord, 2015, 30(10):1351-1360. doi: 10.1002/mds.26307.
doi: 10.1002/mds.26307 URL |
[18] |
Naidoo CC, Nyawo GR, Sulaiman I, et al. Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis. EBioMedicine, 2021, 67:103374. doi: 10.1016/j.ebiom.2021.103374.
doi: 10.1016/j.ebiom.2021.103374 URL |
[19] |
Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice(Review). Clin Epigenetics, 2012, 4(1):4. doi: 10.1186/1868-7083-4-4.
doi: 10.1186/1868-7083-4-4 URL |
[20] |
Vinolo MA, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids. Nutrients, 2011, 3(10):858-876. doi: 10.3390/nu3100858.
doi: 10.3390/nu3100858 pmid: 22254083 |
[21] |
Feng Q, Chen WD, Wang YD. Gut Microbiota:An Integral Moderator in Health and Disease. Front Microbiol, 2018, 9(92):151. doi: 10.3389/fmicb.2018.00151.
doi: 10.3389/fmicb.2018.00151 URL |
[22] |
O’Keefe SJ. Diet,microorganisms and their metabolites,and colon cancer(Review). Nat Rev Gastroenterol Hepatol, 2016, 13(12):691-706. doi: 10.1038/nrgastro.2016.165.
doi: 10.1038/nrgastro.2016.165 URL |
[23] |
Weir TL, Manter DK, Sheflin AM, et al. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One, 2013, 8(8):e70803. doi: 10.1371/journal.pone.0070803.
doi: 10.1371/journal.pone.0070803 URL |
[24] |
Segal LN, Clemente JC, Li Y, et al. Anaerobic Bacterial Fermentation Products Increase Tuberculosis Risk in Antire-troviral-Drug-Treated HIV Patients. Cell Host Microbe, 2017, 21(4):530-537. doi: 10.1016/j.chom.2017.03.003.
doi: 10.1016/j.chom.2017.03.003 URL |
[25] |
Lachmandas E, van den Heuvel CN, Damen MS, et al. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. J Diabetes Res, 2016, 2016:6014631. doi: 10.1155/2016/6014631.
doi: 10.1155/2016/6014631 pmid: 27057552 |
[26] |
Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol, 2016, 14(8):508-522. doi: 10.1038/nrmicro.2016.83.
doi: 10.1038/nrmicro.2016.83 pmid: 27396567 |
[27] |
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine(Review). J Biol Chem, 2020, 295(30):10493-10505. doi: 10.1074/jbc.REV120.011188.
doi: 10.1074/jbc.REV120.011188 pmid: 32503843 |
[28] |
Ramakrishnan SK, Shah YM. Role of Intestinal HIF-2α in Health and Disease. Annu Rev Physiol, 2016, 78:301-325. doi: 10.1146/annurev-physiol-021115-105202.
doi: 10.1146/annurev-physiol-021115-105202 pmid: 26667076 |
[29] |
Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science, 2018, 362:776-780. doi: 10.1126/science.aau5812.
doi: 10.1126/science.aau5812 URL |
[30] |
Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 2016, 17:135. doi: 10.1186/s12859-016-0992-y.
doi: 10.1186/s12859-016-0992-y pmid: 27000765 |
[31] |
Pichler M, Coskun ÖK, Ortega-Arbulú AS, et al. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. Microbiologyopen, 2018, 7(6):e00611. doi: 10.1002/mbo3.611.
doi: 10.1002/mbo3.611 URL |
[1] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[2] | Li Min, Yao Yushan, Qiao Haixia, Lei Hong. Association between pulmonary tuberculosis and the gut microbiota: treatment strategies [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 520-526. |
[3] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[4] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[5] | Fan Jun, Wang Heng, Lan Tinglong, Dong Weijie, Tang Kai, Li Yuan, Yan Guangxuan, Xu Shangsheng, Kang Zhigang, Qin Shibing. Clinical characteristics and surgical outcomes of 12 cases of non-tuberculous mycobacterial spondylitis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 87-95. |
[6] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[7] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[8] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
[9] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[10] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[11] | Yang Liangzi, Zhang Peize, Lu Shuihua. Interpretation of World Health Organization’s Co-administration of Treatment for Drug-resistant Tuberculosis and Hepatitis C: 2024 Update [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 874-876. |
[12] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[13] | Zhang Hui, Ge Li, Zhang Yuhan, Feng Ruie. Clinicopathologic characteristics of 34 cases non-tuberculous mycobacterial disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 756-762. |
[14] | Zhang Hongtai, Ren Yixuan, Hu peilei, Wang Nenhan, Li Jie, Tian Lili, Zhao Yanfeng, Chen Shuangshuang, Li Chuanyou. Comparison of microbiota diversity in the sputum of pulmonary tuberculosis patients with rifampicin resistance or sensitivity [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 625-633. |
[15] | Xu Yu, He Yukun, Zhou Dexun, Zhang Pingji. Analysis of the distribution characteristics of microbial communities in the lower respiratory tract of pulmonary tuberculosis patients based on metagenomic sequencing [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 634-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||