Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (7): 729-734.doi: 10.3969/j.issn.1000-6621.2021.07.015
Previous Articles Next Articles
ZHENG Lu-yao*, LU Yu(), CHEN Xiao-you(
)
Received:
2021-04-02
Online:
2021-07-10
Published:
2021-07-09
Contact:
ZHENG Lu-yao,LU Yu,CHEN Xiao-you
E-mail:luyu4876@hotmail.com;chenxy1998@hotmail.com
ZHENG Lu-yao, LU Yu, CHEN Xiao-you. Research and development/exploitation of therapeutic drugs for NTM pulmonary disease:present situation and challenges[J]. Chinese Journal of Antituberculosis, 2021, 43(7): 729-734. doi: 10.3969/j.issn.1000-6621.2021.07.015
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.07.015
[1] |
Ratnatunga CN, Lutzky VP, Kupz A, et al. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front Immunol, 2020, 11:303. doi: 10.3389/fimmu.2020.00303.
doi: 10.3389/fimmu.2020.00303 pmid: 32194556 |
[2] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J, 2020, 56(1):2000535. doi: 10.1183/13993003.00535-2020.
doi: 10.1183/13993003.00535-2020 URL |
[3] |
Raju RM, Raju SM, Zhao Y, et al. Leveraging Advances in Tuberculosis Diagnosis and Treatment to Address Nontuberculous Mycobacterial Disease. Emerg Infect Dis, 2016, 22(3):365-369. doi: 10.3201/eid2203.151643.
doi: 10.3201/eid2203.151643 URL |
[4] |
Diel R, Nienhaus A, Ringshausen FC, et al. Microbiologic Outcome of Interventions Against Mycobacterium avium Complex Pulmonary Disease: A Systematic Review. Chest, 2018, 153(4):888-921. doi: 10.1016/j.chest.2018.01.024.
doi: 10.1016/j.chest.2018.01.024 URL |
[5] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007, 175(4):367-416. doi: 10.1164/rccm.200604-571ST.
doi: 10.1164/rccm.200604-571ST URL |
[6] |
Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 2017, 72(Suppl 2):ii1-ii64. doi: 10.1136/thoraxjnl-2017-210927.
doi: 10.1136/thoraxjnl-2017-210927 |
[7] |
Le Run E, Arthur M, Mainardi JL. In Vitro and Intracellular Activity of Imipenem Combined with Rifabutin and Avibactam against Mycobacterium abscessus. Antimicrob Agents Chemother, 2018, 62(8):e00623-18. doi: 10.1128/AAC.00623-18.
doi: 10.1128/AAC.00623-18 |
[8] |
van Ingen J, van der Laan T, Dekhuijzen R, et al. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents, 2010, 35(2):169-173. doi: 10.1016/j.ijantimicag.2009.09.023.
doi: 10.1016/j.ijantimicag.2009.09.023 URL |
[9] |
Hombach M, Somoskövi A, Hömke R, et al. Drug susceptibility distributions in slowly growing non-tuberculous mycobacteria using MGIT 960 TB eXiST. Int J Med Microbiol, 2013, 303(5):270-276. doi: 10.1016/j.ijmm.2013.04.003.
doi: 10.1016/j.ijmm.2013.04.003 URL |
[10] |
Cheng A, Tsai YT, Chang SY, et al. In Vitro Synergism of Rifabutin with Clarithromycin, Imipenem, and Tigecycline against the Mycobacterium abscessus Complex. Antimicrob Agents Chemother, 2019, 63(4):e02234-18. doi: 10.1128/AAC.02234-18.
doi: 10.1128/AAC.02234-18 |
[11] |
Pryjma M, Burian J, Thompson CJ. Rifabutin Acts in Synergy and Is Bactericidal with Frontline Mycobacterium abscessus Antibiotics Clarithromycin and Tigecycline, Suggesting a Potent Treatment Combination. Antimicrob Agents Chemother, 2018, 62(8):e00283-18. doi: 10.1128/AAC.00283-18.
doi: 10.1128/AAC.00283-18 |
[12] |
Bermudez LE, Inderlied CB, Kolonoski P, et al. Activity of moxifloxacin by itself and in combination with ethambutol, rifabutin, and azithromycin in vitro and in vivo against Mycobacterium avium. Antimicrob Agents Chemother, 2001, 45(1):217-222. doi: 10.1128/AAC.45.1.217-222.2001.
doi: 10.1128/AAC.45.1.217-222.2001 URL |
[13] |
Dick T, Shin SJ, Koh WJ, et al. Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrob Agents Chemother, 2020, 64(2):e01943-19. doi: 10.1128/AAC.01943-19.
doi: 10.1128/AAC.01943-19 |
[14] |
Ramis IB, Figueiredo R, Ramos DF, et al. Activity of Rifabutin and Hemi-synthetic Derivatives Against Mycobacterium abscessus. Med Chem, 2018, 14(4):394-399. doi: 10.2174/1573406414666171204102633.
doi: 10.2174/1573406414666171204102633 pmid: 29205119 |
[15] |
Huang CC, Wu MF, Chen HC, et al. In vitro activity of amino-glycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect, 2018, 51(5):636-643. doi: 10.1016/j.jmii.2017.05.001.
doi: S1684-1182(17)30081-6 pmid: 28705770 |
[16] |
Banaschewski B, Verma D, Pennings LJ, et al. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J Cyst Fibros, 2019, 18(5):714-720. doi: 10.1016/j.jcf.2019.05.013.
doi: S1569-1993(19)30765-9 pmid: 31138497 |
[17] |
Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine Prevents the Regrowth of Mycobacterium abscessus and Mycobacterium avium Type Strains Exposed to Amikacin and Clarithromycin. Antimicrob Agents Chemother, 2015, 60(2):1097-1105. doi: 10.1128/AAC.02615-15.
doi: 10.1128/AAC.02615-15 URL |
[18] |
Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare complex Lung Disease With a Macrolide, Ethambutol, and Clofazimine. Chest, 2003, 124(4):1482-1486. doi: 10.1378/chest.124.4.1482.
doi: 10.1378/chest.124.4.1482 URL |
[19] |
Martin A, Godino IT, Aguilar-Ayala DA, et al. In vitro activity of bedaquiline against slow-growing nontuberculous mycobacteria. J Med Microbiol, 2019, 68(8):1137-1139. doi: 10.1099/jmm.0.001025.
doi: 10.1099/jmm.0.001025 URL |
[20] |
Aguilar-Ayala DA, Cnockaert M, André E, et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol, 2017, 66(8):1140-1143. doi: 10.1099/jmm.0.000537.
doi: 10.1099/jmm.0.000537 pmid: 28749330 |
[21] |
Ruth MM, Sangen JJN, Remmers K, et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother, 2019, 74(4):935-943. doi: 10.1093/jac/dky526.
doi: 10.1093/jac/dky526 URL |
[22] |
Lounis N, Gevers T, Van den Berg J, et al. ATP synthase inhibition of Mycobacterium avium is not bactericidal. Antimicrob Agents Chemother, 2009, 53(11):4927-4929. doi: 10.1128/AAC.00689-09.
doi: 10.1128/AAC.00689-09 URL |
[23] |
Philley JV, Wallace RJ Jr, Benwill JL, et al. Preliminary Results of Bedaquiline as Salvage Therapy for Patients With Nontuberculous Mycobacterial Lung Disease. Chest, 2015, 148(2):499-506. doi: 10.1378/chest.14-2764.
doi: S0012-3692(15)50346-2 pmid: 25675393 |
[24] |
Brown-Elliott BA, Iakhiaeva E, Griffith DE, et al. In Vitro Activity of Amikacin against Isolates of Mycobacterium avium Complex with Proposed MIC Breakpoints and Finding of a 16S rRNA Gene Mutation in Treated Isolates. J Clin Microbiol, 2013, 51(10):3389-3394. doi: 10.1128/JCM.01612-13.
doi: 10.1128/JCM.01612-13 pmid: 23946523 |
[25] |
Rose SJ, Neville ME, Gupta R, et al. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One, 2014, 9(9):e108703. doi: 10.1371/journal.pone.0108703.
doi: 10.1371/journal.pone.0108703 URL |
[26] |
Olivier KN, Griffith DE, Eagle G, et al. Randomized Trial of Liposomal Amikacin for Inhalation in Nontuberculous Mycobacterial Lung Disease. Am J Respir Crit Care Med, 2017, 195(6):814-823. doi: 10.1164/rccm.201604-0700OC.
doi: 10.1164/rccm.201604-0700OC URL |
[27] |
Griffith DE, Eagle G, Thomson R, et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am J Respir Crit Care Med, 2018, 198(12):1559-1569. doi: 10.1164/rccm.201807-1318OC.
doi: 10.1164/rccm.201807-1318OC URL |
[28] |
Dupont C, Viljoen A, Dubar F, et al. A new piperidinol deriva-tive targeting mycolic acid transport in Mycobacterium abscessus. Mol Microbiol, 2016, 101(3):515-529. doi: 10.1111/mmi.13406.
doi: 10.1111/mmi.13406 URL |
[29] |
彭传新, 李淑娴, 刘婧, 等. 抗非结核分枝杆菌药物研究进展. 中国抗生素杂志, 2021, 46(4):313-320. doi: 10.3969/j.issn.1001-8689.2021.04.009.
doi: 10.3969/j.issn.1001-8689.2021.04.009 |
[30] |
Kozikowski AP, Onajole OK, Stec J, et al. Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of Mycobacterium abscessus Infections. J Med Chem, 2017, 60(13):5876-5888. doi: 10.1021/acs.jmedchem.7b00582.
doi: 10.1021/acs.jmedchem.7b00582 pmid: 28574259 |
[31] |
杨松, 王乐乐, 严晓峰, 等. 非结核分枝杆菌病治疗药物研究进展. 中华结核和呼吸杂志, 2021, 44(1):44-49. doi: 10.3760/cma.j.cn112147-20200227-00199.
doi: 10.3760/cma.j.cn112147-20200227-00199 |
[32] |
Vera-Cabrera L, Brown-Elliott BA, Wallace RJ Jr, et al. In vitro activities of the novel oxazolidinones DA-7867 and DA-7157 against rapidly and slowly growing mycobacteria. Antimicrob Agents Chemother, 2006, 50(12):4027-4029. doi: 10.1128/AAC.00763-06.
doi: 10.1128/AAC.00763-06 URL |
[33] |
Brown-Elliott BA, Wallace JRJ, Land GA. In Vitro Susceptibility Testing of Tedizolid against Nontuberculous Mycobacteria. J Clin Microbiol, 2017, 55(6):1747-1754. doi: 10.1128/JCM.00274-17.
doi: 10.1128/JCM.00274-17 pmid: 28330892 |
[34] |
Livermore DM, Mushtaq S, Warner M, et al. Activity of oxazolidinone TR-700 against linezolid-susceptible and -resis-tant staphylococci and enterococci. J Antimicrob Chemother, 2009, 63(4):713-715. doi: 10.1093/jac/dkp002.
doi: 10.1093/jac/dkp002 pmid: 19164418 |
[35] |
Yuste JR, Bertó J, Del Pozo JL, et al. Prolonged use of tedizolid in a pulmonary non-tuberculous mycobacterial infection after linezolid-induced toxicity. J Antimicrob Chemother, 2017, 72(2):625-628. doi: 10.1093/jac/dkw484.
doi: 10.1093/jac/dkw484 pmid: 27999019 |
[36] |
Kim TS, Choe JH, Kim YJ, et al. Activity of LCB01-0371, a Novel Oxazolidinone, against Mycobacterium abscessus. Antimicrob Agents Chemother, 2017, 61(9):e02752-16. doi: 10.1128/AAC.02752-16.
doi: 10.1128/AAC.02752-16 |
[37] |
Lavollay M, Dubee V, Heym B, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect, 2014, 20(5):297-300. doi: 10.1111/1469-0691.12405.
doi: 10.1111/1469-0691.12405 |
[38] |
Kaushik A, Gupta C, Fisher S, et al. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant Mycobacterium abscessus. Future Microbiol, 2017, 12(6):473-480. doi: 10.2217/fmb-2016-0234.
doi: 10.2217/fmb-2016-0234 URL |
[39] |
Deshpande D, Srivastava S, Chapagain ML, et al. The disco-very of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J Antimicrob Chemother, 2017, 72(suppl 2):i36-i42. doi: 10.1093/jac/dkx306.
doi: 10.1093/jac/dkx306 URL |
[40] |
Dubee V, Bernut A, Cortes M, et al. β-Lactamase inhibition by avibactam inMycobacterium abscessus. J Antimicrob Chemother, 2015, 70(4):1051-1058. doi: 10.1093/jac/dku510.
doi: 10.1093/jac/dku510 |
[41] |
Reddy VM, Einck L, Nacy CA. In vitro antimycobacterial activities of capuramycin analogues. Antimicrob Agents Chemother, 2008, 52(2):719-721. doi: 10.1128/AAC.01469-07.
doi: 10.1128/AAC.01469-07 URL |
[42] |
Dubuisson T, Bogatcheva E, Krishnan MY, et al. In vitro antimicrobial activities of capuramycin analogues against non-tuberculous mycobacteria. J Antimicrob Chemother, 2010, 65(12):2590-2597. doi: 10.1093/jac/dkq372.
doi: 10.1093/jac/dkq372 pmid: 20952419 |
[43] |
Ishizaki Y, Hayashi C, Inoue K, et al. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem, 2013, 288(42):30309-30319. doi: 10.1074/jbc.M113.492173.
doi: 10.1074/jbc.M113.492173 URL |
[44] |
Ishizaki Y, Takahashi Y, Kimura T, et al. Synthesis and biological activity of analogs of CPZEN-45, a novel antituberculosis drug. J Antibiot (Tokyo), 2019, 72(12):970-980. doi: 10.1038/s41429-019-0225-5.
doi: 10.1038/s41429-019-0225-5 URL |
[45] |
Husz$\acute{a}$r S, Singh V, Pol$\check{c}$icov$\acute{a}$ A, et al. N-Acetylglucosamine-1-Phosphate Transferase, WecA, as a Validated Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2017, 61(11):e01310-17. doi: 10.1128/AAC.01310-17.
doi: 10.1128/AAC.01310-17 |
[46] |
Kimura KI. Liposidomycin, the first reported nucleoside antibiotic inhibitor of peptidoglycan biosynthesis translocase I: The discovery of liposidomycin and related compounds with a perspective on their application to new antibiotics. J Antibiot (Tokyo), 2019, 72(12):877-889. doi: 10.1038/s41429-019-0241-5.
doi: 10.1038/s41429-019-0241-5 URL |
[47] |
Cowman S, Burns K, Benson S, et al. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect, 2016, 72(3):324-331. doi: 10.1016/j.jinf.2015.12.007.
doi: 10.1016/j.jinf.2015.12.007 URL |
[48] |
Khosravi AD, Mirsaeidi M, Farahani A, et al. Prevalence of nontuberculous mycobacteria and high efficacy of d-cycloserine and its synergistic effect with clarithromycin against Mycobacterium fortuitum and Mycobacterium abscessus. Infect Drug Resist, 2018, 11:2521-2532. doi: 10.2147/IDR.S187554.
doi: 10.2147/IDR.S187554 pmid: 30573983 |
[49] |
Singh R, Manjunatha U, Boshoff HI, et al. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release. Science, 2008, 322(5906):1392-1395. doi: 10.1126/science.1164571.
doi: 10.1126/science.1164571 URL |
[50] |
Lee SFK, Laughon BE, McHugh TD, et al. New drugs to treat difficult tuberculous and nontuberculous mycobacterial pulmonary disease. Curr Opin Pulm Med, 2019, 25(3):271-280. doi: 10.1097/MCP.0000000000000570.
doi: 10.1097/MCP.0000000000000570 |
[51] |
Soni I, De Groote MA, Dasgupta A, et al. Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J Med Microbiol, 2016, 65(1):1-8. doi: 10.1099/jmm.0.000198.
doi: 10.1099/jmm.0.000198 URL |
[52] |
Disratthakit A, Doi N. In Vitro Activities of DC-159a, a Novel Fluoroquinolone, against Mycobacterium Species. Antimicrob Agents Chemother, 2010, 54(6):2684-2686. doi 10.1128/AAC.01545-09.
doi: 10.1128/AAC.01545-09 URL |
[53] |
Cynamon M, Jureller J, Desai B, et al. In Vitro Activity of TP-271 against Mycobacterium abscessus, Mycobacterium fortuitum, and Nocardia Species. Antimicrob Agents Chemother, 2012, 56(7):3986-3988. doi: 10.1128/AAC.00743-12.
doi: 10.1128/AAC.00743-12 URL |
[54] |
Grossman TH, Starosta AL, Fyfe C, et al. Target- and Resistance-Based Mechanistic Studies with TP-434, a Novel Fluorocycline Antibiotic. Antimicrob Agents Chemother, 2012, 56(5):2559-2564. doi: 10.1128/AAC.06187-11.
doi: 10.1128/AAC.06187-11 URL |
[55] | 宋善敏. 部分中草药与无机盐对结核分枝杆菌生物膜的影响. 贵阳:贵州大学, 2018. |
[56] |
Esteban J, García-Coca M.Mycobacterium Biofilms. Front Microbiol, 2018, 8:2651. doi: 10.3389/fmicb.2017.02651.
doi: 10.3389/fmicb.2017.02651 URL |
[57] |
Teng R, Dick T. Isoniazid resistance of exponentially growing Mycobacterium smegmatis biofilm culture. FEMS Microbiol Let, 2003, 227(2):171-174. doi: 10.1016/S0378-1097(03)00584-6.
doi: 10.1016/S0378-1097(03)00584-6 URL |
[58] |
Fux CA, Costerton JW, Stewart PS, et al. Survival strategies of infectious biofilms. Trends Microbiol, 2005, 13(1):34-40. doi: 10.1016/j.tim.2004.11.010.
doi: 10.1016/j.tim.2004.11.010 pmid: 15639630 |
[59] |
丁磊, 徐俊驰, 邱文娜, 等. 结核分枝杆菌耐药机制和治疗的最新研究进展. 现代检验医学杂志, 2021, 36(2):1-5. doi: 10.3969/j.issn.1671-7414.2021.02.001.
doi: 10.3969/j.issn.1671-7414.2021.02.001 |
[60] |
Luthra S, Rominski A, Sander P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol, 2018, 9:2179. doi: 10.3389/fmicb.2018.02179.
doi: 10.3389/fmicb.2018.02179 URL |
[61] |
van Ingen J, Boeree MJ, van Soolingen D, et al. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat, 2012, 15(3):149-161. doi: 10.1016/j.drup.2012.04.001.
doi: 10.1016/j.drup.2012.04.001 URL |
[62] |
Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol, 2011, 162(6):1239-1249. doi: 10.1111/j.1476-5381.2010.01127.x.
doi: 10.1111/j.1476-5381.2010.01127.x URL |
[63] |
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev, 2012, 25(3):545-582. doi: 10.1128/CMR.05030-11.
doi: 10.1128/CMR.05030-11 pmid: 22763637 |
[64] |
Timmins GS. What are the challenges in commercial non-tuberculous mycobacteria (NTM) drug discovery and how should we move forward? Expert Opin Drug Discov, 2020, 15(1):7-9. doi: 10.1080/17460441.2020.1673362.
doi: 10.1080/17460441.2020.1673362 URL |
[65] |
Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Future Med Chem, 2020, 12(10):939-947. doi: 10.4155/fmc-2019-0307.
doi: 10.4155/fmc-2019-0307 pmid: 32270704 |
[66] |
Abdolmaleki A, Ghasemi JB, Ghasemi F. Computer Aided Drug Design for Multi-Target Drug Design: SAR/QSAR, Molecular Docking and Pharmacophore Methods. Curr Drug Targets, 2017, 18(5):556-575. doi: 10.2174/1389450117666160101120822.
doi: 10.2174/1389450117666160101120822 pmid: 26721410 |
[67] |
Aziz DB, Low JL, Wu ML, et al. Rifabutin Is Active against Mycobacterium abscessus Complex. Antimicrob Agents Chemother, 2017, 61(6):e00155-17. doi: 10.1128/AAC.00155-17.
doi: 10.1128/AAC.00155-17 |
[68] |
Falkinham JO 3rd. Challenges of NTM Drug Development. Front Microbiol, 2018, 9:1613. doi: 10.3389/fmicb.2018.01613.
doi: 10.3389/fmicb.2018.01613 pmid: 30072975 |
[1] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[2] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[3] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Inspire-CODA Research Group. Expert consensus on the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 123-129. |
[4] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[5] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[6] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[7] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[8] | Fan Jun, Wang Heng, Lan Tinglong, Dong Weijie, Tang Kai, Li Yuan, Yan Guangxuan, Xu Shangsheng, Kang Zhigang, Qin Shibing. Clinical characteristics and surgical outcomes of 12 cases of non-tuberculous mycobacterial spondylitis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 87-95. |
[9] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[10] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[11] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
[12] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[13] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[14] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||