Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (3): 282-285.doi: 10.3969/j.issn.1000-6621.2020.03.019
• Review Articles • Previous Articles Next Articles
Received:
2019-12-06
Online:
2020-03-10
Published:
2020-03-18
Contact:
Jun-wei ZHAO
E-mail:edward35@126.com
GAO Shu-hui,ZHAO Jun-wei. Research progress of exosomal non-coding RNA as potential biomarkers of tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(3): 282-285. doi: 10.3969/j.issn.1000-6621.2020.03.019
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.03.019
[1] | Global tuberculosis report 2019. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] | Cui JY, Liang HW, Pan XL , et al. Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PLoS One, 2017,12(9):e0184113. |
[3] | Liu F, Chen J, Wang P , et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun, 2018,9(1):4295. |
[4] | Yang X, Yang J, Wang J , et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep, 2016,6:38963. |
[5] | Huang S, Huang Z, Luo Q , et al. The expression of lncRNA NEAT1 in human tuberculosis and its antituberculosis effect. Biomed Res Int, 2018,2018:9529072. |
[6] | He J, Ou Q, Liu C , et al. Differential expression of long non-coding RNAs in patients with tuberculosis infection. Tuberculosis (Edinb), 2017,107:73-79. |
[7] | Alipoor SD, Mortaz E, Garssen J , et al. Exosomes and exosomal miRNA in respiratory diseases. Mediators Inflamm, 2016,2016:5628404. |
[8] | Zhang W, Jiang X, Bao J , et al. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol, 2018,9:90. |
[9] | Wang J, Yao Y, Chen X , et al. Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection. Biomed Pharmacother, 2018,108:1451-1459. |
[10] | Wang Y, Liu J, Ma J , et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer, 2019,18(1):116. |
[11] | Bellin G, Gardin C, Ferroni L , et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells, 2019,8(2):166. |
[12] | 王鑫洋, 付英梅, 赵雁林 , 等. 结核分枝杆菌外泌体的研究进展. 中国防痨杂志, 2018,40(10):1129-1133. |
[13] | Giri PK, Kruh NA, Dobos KM , et al. Proteomic analysis identifies highly antigenic proteins in exosomes from M.tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics, 2010,10(17):3190-3202. |
[14] | Hadifar S, Fateh A, Yousefi MH , et al. Exosomes in tuberculosis: Still terra incognita? J Cell Physiol, 2019,234(3):2104-2111. |
[15] | Hosseini HM, Fooladi AA, Nourani MR , et al. The role of exosomes in infectious diseases. Inflamm Allergy Drug Targets, 2013,12(1):29-37. |
[16] | Schorey JS, Bhatnagar S . Exosome function: from tumor immunology to pathogen biology. Traffic, 2008,9(6):871-881. |
[17] | Singh PP, LeMaire C, Tan JC , et al. Exosomes released from M.tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One, 2011,6(4):e18564. |
[18] | Cheng Y, Schorey JS . Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep, 2019, 20(3). pii: e46613. |
[19] | 吕翎娜, 贾红彦, 廖莎 , 等. 结核分枝杆菌膜囊泡的分离及其对细胞因子释放的作用. 中国防痨杂志, 2017,39(8):799-804. |
[20] | Jurkoshek KS, Wang Y, Athman JJ , et al. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles. Front Cell Dev Biol, 2016,4:125. |
[21] | Prados-Rosales R, Carreño LJ, Batista-Gonzalez A , et al. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. mBio, 2014,5(5):e01921-14. |
[22] | Dicks KV, Stout JE . Molecular Diagnostics for Mycobacterium tuberculosis Infection. Annu Rev Med, 2019,70:77-90. |
[23] | 吴海燕, 叶志坚, 王霞芳 , 等. GeneXpert MTB/RIF技术诊断肺结核及利福平耐药性的价值. 结核病与肺部健康杂志, 2019,8(3):172-177. |
[24] | 陆宇, 朱莉贞, 段连山 , 等. mRNA作为结核分支杆菌活菌检测标志的可行性研究. 中华结核和呼吸杂志, 2003,26(7):419-423. |
[25] | Fan L, Li D, Zhang S , et al. Parallel tests using culture, Xpert MTB/RIF, and SAT-TB in sputum plus bronchial alveolar lavage fluid significantly increase diagnostic performance of smear-negative pulmonary tuberculosis. Front Microbiol, 2018,9:1107. |
[26] | Wu LS, Lee SW, Huang KY , et al. Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection. Biomed Res Int, 2014,2014:895179. |
[27] | Li X, Huang S, Yu T , et al. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis‐infected macrophages by targeting TRAF6. J Cell Mol Med, 2019,23(8):5642-5653. |
[28] | Shi G, Mao G, Xie K , et al. MiR-1178 regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages partly via TLR4. J Cell Biochem, 2018,119(9):7449-7457. |
[29] | Zhang G, Liu X, Wang W , et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle, 2016,15(18):2527-2538. |
[30] | Lin Y, Zhang Y, Yu H , et al. Identification of unique key genes and miRNAs in latent tuberculosis infection by network analysis. Mol Immunol, 2019,112:103-114. |
[31] | Yan H, Xu R, Zhang X , et al. Identifying differentially expressed long non-coding RNAs in PBMCs in response to the infection of multidrug-resistant tuberculosis. Infect Drug Resist, 2018,11:945-959. |
[32] | Li M, Cui J, Niu W , et al. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun, 2019,509(3):803-809. |
[33] | Huang ZK, Yao FY, Xu JQ , et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem, 2018,45(3):1230-1240. |
[34] | Huang Z, Su R, Qing C , et al. Plasma Circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Front Microbiol, 2018,9:2010. |
[35] | Qian Z, Liu H, Li M , et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine, 2018,27:18-26. |
[36] | Yi Z, Gao K, Li R , et al. Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med, 2018,22(9):4076-4084. |
[37] | Fu Y, Wang J, Qiao J , et al. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med, 2019,23(3):1917-1925. |
[38] | Valadi H, Ekström K, Bossios A , et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007,9(6):654-659. |
[39] | Wu J, Gu J, Shen L , et al. Exosomal MicroRNA-155 inhibits enterovirus A71 infection by targeting PICALM. Int J Biol Sci, 2019,15(13):2925-2935. |
[40] | Li S, Li S, Wu S , et al. Exosomes modulate the viral replication and host immune responses in HBV infection. Biomed Res Int, 2019,2019:2103943. |
[41] | Li DL, Zou WH, Deng SQ , et al. Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection. Int J Biol Sci, 2019, 20(21). pii: E5506. |
[42] | Mortaz E, Alipoor SD, Tabarsi P , et al. The analysis of exosomal micro-RNAs in peripheral blood mononuclear cell-derived macrophages after infection with bacillus Calmette-Guerin by RNA sequencing. Int J Mycobacteriol, 2016,5 Suppl 1: S184-185. |
[43] | Alipoor SD, Mortaz E, Tabarsi P , et al. Bovis Bacillus Calmette-Guerin (BCG) infection induces exosomal miRNA release by human macrophages. J Transl Med, 2017,15(1):105. |
[44] | Singh PP, Li L, Schorey JS . Exosomal RNA from Mycobacterium tuberculosis-infected cells is functional in recipient macrophages. Traffic, 2015,16(6):555-571. |
[45] | Wang Y, Xu YM, Zou YQ , et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore), 2017,96(44):e8361. |
[46] | Zhang D, Yi Z, Fu Y . Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem, 2019,120(4):5889-5896. |
[47] | Alipoor SD, Tabarsi P, Varahram M , et al. Serum exosomal miRNAs are associated with active pulmonary tuberculosis. Dis Markers, 2019,2019:1907426. |
[48] | Hu X, Liao S, Bai H , et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019,40:564-573. |
[49] | Lv L, Li C, Zhang X , et al. RNA profiling analysis of the serum exosomes derived from patients with active and latent Mycobacterium tuberculosis infection. Front Microbiol, 2017,8:1051. |
[50] | Lyu L, Zhang X, Li C , et al. Small RNA profiles of serum exosomes derived from individuals with latent and active tuberculosis. Front Microbiol, 2019,10:1174. |
[51] | 高谦, 梅建, 谭卫国 . 实事求是抓住核心脚踏实地精准防控. 中国防痨杂志, 2019,41(10):1074-1079. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||