Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (3): 286-292.doi: 10.3969/j.issn.1000-6621.2020.03.020
• Review Articles • Previous Articles Next Articles
CHEN Hao,WU Nan-nan,HU Wen-hui(),YANG Zhong-jin(
)
Received:
2019-10-24
Online:
2020-03-10
Published:
2020-03-18
Contact:
Wen-hui HU,Zhong-jin YANG
E-mail:huwenhui@gzhumu.edu.cn;306645457@qq.com
CHEN Hao,WU Nan-nan,HU Wen-hui,YANG Zhong-jin. Research progress of new targets for antituberculosis agents[J]. Chinese Journal of Antituberculosis, 2020, 42(3): 286-292. doi: 10.3969/j.issn.1000-6621.2020.03.020
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.03.020
药物名称 | 靶点 | 作用机制 | 分类 | 化学结构 | 临床阶段 | 临床试验编号 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
德拉马尼 (OPC-67683) | 靶点尚 未明确 | 抑制细胞壁生成和 细胞呼吸 | 硝基咪唑 | | 临床Ⅲ期 | NCT01424670 | ||||||
普瑞马尼 (PA-824) | 靶点尚 未明确 | 抑制细胞壁生成和 细胞呼吸 | 硝基咪唑 | | 临床Ⅲ期 | NCT02342886 | ||||||
BTZ043 | DprE1 | 抑制细胞壁合成 | 苯并噻嗪酮 | | 临床Ⅰ期 | NCT04044001 | ||||||
PBTZ169 (macozinone) | DprE1 | 抑制细胞壁合成 | 苯并噻嗪酮 | | 临床Ⅰ期 | NCT04150224 | ||||||
SQ109 | MmpL3 | 抑制细胞壁合成 | 二胺类 衍生物 | | 临床Ⅱ期 | NCT01785186 | ||||||
OPC-167832 | DprE1 | 抑制细胞壁合成 | 氟喹诺酮 | | 临床Ⅰ期 | NCT03678688 | ||||||
TBA-7371 | DprE1 | 抑制细胞壁合成 | 氮杂吲哚 | | 临床Ⅰ期 | NCT03199339 | ||||||
PNU-100480 (sutezolid) | 23S rRNA | 抑制蛋白质合成 | 恶唑烷酮 | | 临床Ⅱ期 | NCT03959566 | ||||||
LCB01-0371 (delpazolid) | 23S rRNA | 抑制蛋白质合成 | 恶唑烷酮 | | 临床Ⅱ期 | NCT02836483 | ||||||
GSK3036656 | LeuRS | 抑制蛋白质合成 | 氧杂硼杂环 戊烯 | | 临床Ⅱ期 | NCT03557281 | ||||||
贝达喹啉 (TMC207) | atpE | 抑制ATP合成酶 | 二芳基喹啉 | | 临床Ⅲ期 | NCT00910871 | ||||||
Q203 (telacebec) | qcrB | 抑制细胞呼吸 | 咪唑并吡啶 | | 临床Ⅱ期 | NCT03563599 | ||||||
药物名称 | 靶点 | 作用机制 | 分类 | 化学结构 | 临床阶段 | 临床试验编号 | ||||||
TBI-166 | 靶点尚 未明确 | 抑制电子链传递和 细胞呼吸 | 氯苯吩嗪 | | 临床Ⅰ期 | 暂无数据 |
[1] | Global tuberculosis report 2019. Guidelines for treatment of drug-susceptible tuberculosis and patient care. Geneva: World Health Organization, 2017. |
[2] | Tiberi S, Muñoz-Torrico M, Duarte R , et al. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 2018,24(2):86-98. |
[3] | Peng CT, Gao C, Wang NY , et al. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg Med Chem Lett, 2015,25(7):1373-1376. |
[4] | Trefzer C, Škovierová H, Buroni S , et al. Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-β-d-ribofuranose 2'-Oxidase DprE1. J Am Chem Soc, 2012,134(2):912-915. |
[5] | Evans JC, Mizrahi V . Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Curr Opin Microbiol, 2018,45:39-46. |
[6] | Xu Z, Meshcheryakov VA, Poce G , et al. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci U S A, 2017,114(30):7993-7998. |
[7] | Li W, Obregon-Henao A, Wallach JB , et al. Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3. Antimicrob Agents Chemother, 2016,60(9):5198-5207. |
[8] | Tahlan K, Wilson R, Kastrinsky DB , et al. SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012,56(4):1797-1809. |
[9] | Mukherjee T, Boshoff H . Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem, 2011,3(11):1427-1454. |
[10] | Manjunatha U, Boshoff HI, Barry CE . The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun Integr Biol, 2009,2(3):215-218. |
[11] | Matsumoto M, Hashizume H, Tomishige T , et al. OPC-67683, a nitro-dihydroimidazooxazole derivative with promi-sing action against tuberculosis in vitro and in mice. PLoS Med, 2006,3(11):e466. |
[12] | Global tuberculosis report 2019. The Use of Delamanid in the Treatment of Multidrug-Resistant Tuberculosisin Children and Adolescents: Interim Policy Guidance. Geneva: World Health Organization, 2016. |
[13] | Baptista R, Fazakerley DM, Beckmann M , et al. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep, 2018,8(1):5084. |
[14] | Lenaerts AJ, Gruppo V, Marietta KS , et al. Preclinical Testing of the Nitroimidazopyran PA-824 for Activity against Mycobacterium tuberculosis in a Series of In Vitro and In Vivo Models. Antimicrob Agents Chemotherapy, 2005,49(6):2294-2301. |
[15] | Diacon AH, Dawson R, du Bois J , et al. Phase Ⅱ Dose-Ranging Trial of the Early Bactericidal Activity of PA-824. Antimicrob Agents Chemotherapy, 2012,56(6):3027-3031. |
[16] | Dawson R, Diacon AH, Everitt D , et al. Efficiency and safety of the combination of moxifloxacin, pretomanid(PA-824), and pyrazinamide during thefirst 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet, 2015,385(9979):1738-1747. |
[17] | Makarov V, Manina G, Mikusova K , et al. Benzothiazinones Kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009,324(5928):801-804. |
[18] | Li L, Lv K, Yang Y , et al. Identificationof N-Benzyl 3,5-Dinitrobenzamides Derived from PBTZ169 as Antitubercular Agents. ACS Med Chem Lett, 2018,9(7):741-745. |
[19] | Li K, Wang Y, Yang G , et al. Oxa, Thia,Heterocycle, and Carborane Analoguesof SQ109: Bacterial and ProtozoalCell Growth Inhibitors. ACS Infect Dis, 2015,1(5):215-221. |
[20] | Chen P, Gearhart J, Protopopova M , et al. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J Antimicrob Chemother, 2006,58(2):332-337. |
[21] | Infectex Announces Positive Phase 2b-3 Clinical Trial Results of SQ109 for the Treatment of Multidrug-Resistant Pulmonary Tuberculosis[EB/OL]. 2017- 03- 21. [2019-10-11]. http://www.sequella.com/docs/Infectex_PR_Mar2017.pdf . |
[22] | Updates in the Development of Delamanid, OPC-167832, and Otsuka ’s LAM Biomarker[EB/OL]. [ 2019- 10- 11].http://www.cptrinitiative.org/wp-content/uploads/2017/05/Jeffrey_Hafkin_CPTR2017_JH.pdf . |
[23] | Otsuka Awarded Grant to Advance Development of Novel Anti-Tuberculosis Compound OPC-167832 with Delamanid|Business Wire[EB/OL]. 2018-01-29. [2019-10-11]. https://www.businesswire.com/news/home/20180129005073/en/Otsuka-Awarded-Grant-Advance-Development-Anti-Tuberculosis-Compound. |
[24] | Working Group for New TB Drugs. TBA-7371[EB/OL].[2019-10-11]. https://www.newtbdrugs.org/pipeline/compound/tba-7371. |
[25] | Jeong JW, Jung SJ, Lee HH , et al. In Vitro and In Vivo Activities of LCB01-0371, a New Oxazolidinone. Antimicrob Agents Chemother, 2010,54(12):5359-5362. |
[26] | Li X, Hernandez V, Rock FL , et al. Discovery of a Potent and Specific M.tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy) benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J Med Chem, 2017,60(19):8011-8026. |
[27] | Yip PC, Kam KM, Lam ET , et al. In vitro activities of PNU-100480 and linezolid against drug-susceptible and drug-resis-tant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents, 2013,42(1):96-97. |
[28] | Wallis RS, Jakubiec W, Kumar V , et al. Biomarker-Assisted Dose Selection for Safety and Efficacy in Early Development of PNU-100480 for Tuberculosis. Antimicrob Agents Chemother, 2011,55(2):567-574. |
[29] | Zong Z, Jing W, Shi J , et al. Comparison of In Vitro Activity and MIC Distributions between the Novel Oxazolidinone Delpazolid and Linezolid against Multidrug-Resistant and Extensively Drug-ResistantMycobacterium tuberculosis in China. Antimicrob Agents Chemother, 2018,62(5). pii: e00165-18. |
[30] | Tenero D, Derimanov G, Carlton A , et al. First-Time-in-Human Study and Predict-ion of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment. Antimicrob Agents Chemother, 2019, 63(8). pii:e00240-19. |
[31] | Bernard Fourie. The contribution of bedaquiline to the treatment of MDRTB.[C/OL].Geneva: WHO/STB Expert Group Meeting, 2013 [ 2019- 10- 11]. http://www.atsdr.cdc.gov/c95ab.html . |
[32] | Kalia NP, Hasenoehrl EJ, Ab Rahman NB , et al. Exploiting the syntheticlethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci U S A, 2017,114(28):7426-7431. |
[33] | Lechartier B, Cole ST . Mode of Action of Clofazimine and Combination Therapy with Benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015,59(8):4457-4463. |
[34] | Erica Lessem,Lindsay McKenna. An Activist’s Guide to BEDAQUILINE (Sirturo) [EB/OL].[ 2019- 10- 11]. http://www.treatmentactiongroup.org/sites/default/files/BDQ_guide_10_5_18.pdf . |
[35] | Global tuberculosis report 2019. The use of bedaquiline in the treatment of multidrug-resistant tuberculosis: interim policy guidance. Geneva:World Health Organization, 2013. |
[36] | Pethe K, Bifani P, Jang J , et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med, 2013,19(9):1157-1160. |
[37] | Zhang D, Lu Y, Liu K , et al. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis. J Med Chem, 2012,55(19):8409-8417. |
[1] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Inspire-CODA Research Group. Expert consensus on the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 123-129. |
[2] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[3] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
[4] | Duan Shujuan, Wang Wei, Pang Yu, Li Ling. Research progress on the regulation of host anti-tuberculosis effect by tyrosine kinase inhibitors [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 584-589. |
[5] | Jiayinati Jingesi, Wang Xinqi, Liu Nianqiang, Wang Senlu, Yipaer Aihaiti, Feng Jianyu, Huang Tao, Kedieryekezi Wufuer. Analysis of treatment completeness and its influencing factors of preventive treatment among 387 latent tuberculosis infection cases [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1496-1503. |
[6] | Shi Chunjing, Liu Xing, Li Longfen, Li Wenming, Zhang Huajie, Wang Ge, Zeng Haiyan, Liu Li, Shen Lingjun. Research progress on the effects of bedaquiline,delamanid and pretomanid on liver function in the treatment of multidrug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1560-1565. |
[7] | Sha Wei. Significance and challenges of the implementation of PAN-TB treatment strategy for tuberculosis prevention and control [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1188-1192. |
[8] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University. Expert consensus on clinical monitoring and management of QTc interval prolongation caused by anti-tuberculous drugs [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 8-17. |
[9] | Wang Honghong, Guo Shaochen, Zhou Wenqiang, Liu Zhongquan, Zhu Hui, Lu Yu. Influence of linezolid blood concentration on hematological toxicity in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2023, 45(2): 165-171. |
[10] | Chen Fang, Zhang Xiaofo, Zhou Haiyi, Zhang Feng, Wang Manzhi. Analysis of status and influencing factors associated with anti-tuberculosis drug-related liver injury in children [J]. Chinese Journal of Antituberculosis, 2023, 45(1): 45-51. |
[11] | LIU Hai-ting, LI Dong-shuo, ZHANG Lei, WANG Ning, WANG Bin, DING Yang-ming, YAO Rong, LU Yu. A preliminary study on the synergy and mechanism of pyrifazimine and bedaquiline [J]. Chinese Journal of Antituberculosis, 2022, 44(7): 646-653. |
[12] | LU Ni-hong, SHEN Ling-jun, LIU Hong-lu, CHEN Yang-jun, YANG Yan, DU Ying-rong. Clinical value of ESAT-6, immune and inflammatory indexes in the diagnosis of anti-tuberculosis drug-induced liver injury [J]. Chinese Journal of Antituberculosis, 2022, 44(7): 654-659. |
[13] | NIE Wen-juan, ZHOU Wen-qiang, CHU Nai-hui. Research progress on pharmacokinetics and drug interaction of bedaquiline [J]. Chinese Journal of Antituberculosis, 2022, 44(7): 716-719. |
[14] | XUE Yu, ZHANG Jing, NIE Wen-juan. The efficacy and safety of regimen containing bedaquiline in the treatment of elderly drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2022, 44(6): 582-586. |
[15] | LIANG Li, ZOU Li-ping, XIE Fang-hui, CHEN Qing, WU Gui-hui. Three cases of anti-tuberculosis therapy-associated acute liver failure in tuberculosis children and literature review [J]. Chinese Journal of Antituberculosis, 2022, 44(4): 343-348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||