Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (10): 1188-1192.doi: 10.19982/j.issn.1000-6621.20240316
• Special Topic • Previous Articles Next Articles
Received:
2024-08-01
Online:
2024-10-10
Published:
2024-09-29
Contact:
Sha Wei, Email: Supported by:
CLC Number:
Sha Wei. Significance and challenges of the implementation of PAN-TB treatment strategy for tuberculosis prevention and control[J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1188-1192. doi: 10.19982/j.issn.1000-6621.20240316
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240316
参数 | 最低配置 | 最高配置 | ||
---|---|---|---|---|
2016年 | 2023年 | 2016年 | 2023年 | |
指征 | 一线治疗方案,不需要确定利福平是否耐药 | 包括利福平敏感结核病和利福平耐药结核病在内的活动性结核病患者的一线治疗 | 一线治疗方案,不需要确定利福平是否耐药 | 包括利福平敏感结核病和利福平耐药结核病在内的活动性结核病患者的一线治疗 |
疗效 | 不劣于利福平敏感结核病,疗程6个月 | 疗效与利福平敏感结核病标准治疗相当的方案,疗程3~4个月 | 不劣于利福平敏感结核病,疗程4个月 | 疗效优于利福平敏感结核病标准治疗方案,疗程≤2个月 |
安全性和耐受性 | 不良事件的发生率和严重程度不高于标准方案。除特殊人群(已患肝病和糖尿病等)外,每月对不良反应进行实验室监测不超过1次 | 不良事件的发生率和严重程度低于利福平敏感结核病的标准治疗。除特定人群(已患肝肾疾病和糖尿病等)外,每月不超过1次对药物毒性的临床和实验室监测。耐受性应优于利福平敏感结核病的标准治疗方案 | 不良事件的发生率和严重程度优于标准方案。除特殊人群(已患肝病和糖尿病等)外,无需进行主动的不良反应监测。无需监测QT间期 | 不良事件的发生率和严重程度应低于利福平敏感结核病的标准治疗方案。除特定人群(已患肝、肾疾病和糖尿病等)外,无需对药物毒性进行积极的临床监测和实验室监测。耐受性应优于利福平敏感结核病的标准治疗方案 |
药物相互作用与代谢 | 需要针对药物相互作用进行剂量调整或安全性监测,包括:至少1种一线抗逆转录病毒治疗药物、诱导或抑制细胞色素P450肝酶的药物、致QT延长药物 | 无 | 其他药物无需调整剂量,同时无需对以下药物主动进行药物相互作用监测:抗逆转录病毒治疗药物与复方新诺明、诱导或抑制细胞色素P450肝酶的药物、致QT延长药物 | 无 |
发生耐药性的可能(产生耐药性的倾向或存在交叉耐药性) | 方案中每种药物的突变率(在未选择的细菌群体中)每种细菌每代不应大于1/107;治疗时对方案中的1种或多种药物的新耐药率低于2%,并且治疗前对药物不存在耐药性 | 在1种或多种药物的治疗过程中或治疗后获得或扩大耐药性的可能不高于标准治疗方案 | 方案中每种药物的突变率(在未选择的细菌群体中)每种细菌每代不应大于1/109;治疗后,基本上没有获得性耐药(耐药率<0.1%),并且治疗前对方案中的药物不存在耐药性 | 在1种或多种药物的治疗过程中或治疗后获得或扩大耐药性的可能低于标准治疗方案 |
服药负荷 | 无 | 不大于当前的利福平敏感结核病标准治疗方案 | 无 | 成人剂量1片/d |
[1] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection, third edition. Geneva: World Health Organi-zation, 2024. |
[2] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022. |
[3] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[4] | World Health Organization. Target regimen profiles for TB treatment: candidates: rifampicin-susceptible, rifampicin-resistant and pan-TB treatment regimens. Geneva: World Health Organization, 2016. |
[5] |
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol, 2022, 20(11):685-701. doi:10.1038/s41579-022-00731-y.
pmid: 35478222 |
[6] | Paton NI, Cousins C, Suresh C, et al. Treatment Strategy for Rifampin-Susceptible Tuberculosis. N Engl J Med, 2023, 388(10):873-887. doi:10.1056/NEJMoa2212537. |
[7] | Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020, 382(10):893-902. doi:10.1056/NEJMoa1901814. |
[8] | Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N Engl J Med, 2022, 387(9):810-823. doi:10.1056/NEJMoa2119430. |
[9] | Nyang’wa BT, Berry C, Kazounis E, et al. Short oral regimens for pulmonary rifampicin-resistant tuberculosis (TB-PRACTECAL): an open-label, randomised, controlled, phase 2B-3, multi-arm, multicentre, non-inferiority trial. Lancet Respir Med, 2024, 12(2):117-128. doi:10.1016/S2213-2600(23)00389-2. |
[10] | World Health Organization. Target regimen profiles for tuberculosis treatment, 2023 update. Geneva: World Health Organization, 2024. |
[11] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet, 2012, 380(9846):986-993. doi:10.1016/S0140-6736(12)61080-0.
pmid: 22828481 |
[12] | Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med, 2015, 191(8):943-953. doi:10.1164/rccm.201410-1801OC. |
[13] |
Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet, 2015, 385(9979):1738-1747. doi:10.1016/S0140-6736(14)62002-X.
pmid: 25795076 |
[14] |
Tweed CD, Dawson R, Burger DA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med, 2019, 7(12):1048-1058. doi:10.1016/S2213-2600(19)30366-2.
pmid: 31732485 |
[15] | Cevik M, Thompson LC, Upton C, et al. Bedaquiline-pretomanid-moxifloxacin-pyrazinamide for drug-sensitive and drug-resistant pulmonary tuberculosis treatment: a phase 2c, open-label, multicentre, partially randomised controlled trial. Lancet Infect Dis, 2024, 17: S1473- 3099(24)00223-8. doi:10.1016/S1473-3099(24)00223-8. |
[16] | Almeida D, Converse PJ, Li SY, et al. Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant Rv0678 Mutant in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother, 2021, 65(12):e0141221. doi:10.1128/AAC.01412-21. |
[17] | Tasneen R, Betoudji F, Tyagi S, et al. Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Beda-quiline and Pretomanid in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother, 2015, 60(1):270-277. doi:10.1128/AAC.01691-15. |
[18] | Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob Agents Chemother, 2020, 64(6):e02020-19. doi:10.1128/AAC.02020-19. |
[19] | Tenero D, Derimanov G, Carlton A, et al. First-Time-in-Human Study and Prediction of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment. Antimicrob Agents Chemother, 2019, 63(8):e00240-19. doi:10.1128/AAC.00240-19. |
[20] | Brown KL, Wilburn KM, Montague CR, et al. Cyclic AMP-Mediated Inhibition of Cholesterol Catabolism in Mycobacterium tuberculosis by the Novel Drug Candidate GSK2556286. Antimicrob Agents Chemother, 2023, 67(1): e0129422. doi:10.1128/aac.01294-22. |
[21] | Wallis RS, Cohen T, Menzies NA, et al. Pan-tuberculosis regimens: an argument for. Lancet Respir Med, 2018, 6(4):239-240. doi:10.1016/S2213-2600(18)30096-1. |
[22] |
Dheda K, Gumbo T, Lange C, et al. Pan-tuberculosis regimens: an argument against. Lancet Respir Med, 2018, 6(4):240-242. doi:10.1016/S2213-2600(18)30097-3.
pmid: 29595502 |
[23] |
Gupta R, Wells CD. Pan-tuberculosis regimens: re-framing the argument. Lancet Respir Med, 2018, 6(7):e28. doi:10.1016/S2213-2600(18)30189-9.
pmid: 29976444 |
[24] | Arinaminpathy N, Gomez GB, Sachdeva KS, et al. The potential deployment of a pan-tuberculosis drug regimen in India: A modelling analysis. PLoS One, 2020, 15(3):e0230808. doi:10.1371/journal.pone.0230808. |
[25] |
Kendall EA, Brigden G, Lienhardt C, et al. Would pan-tuberculosis treatment regimens be cost-effective?. Lancet Respir Med, 2018, 6(7):486-488. doi:10.1016/S2213-2600(18)30197-8.
pmid: 29859919 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||