[1] |
舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006.
|
[2] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
[3] |
毕圣贤, 胡锡健, 张辉国. 2014—2018年中国大陆结核病疫情的时空分布特征及其影响因素. 中华疾病控制杂志, 2021, 25(7): 758-762,811. doi:10.16462/j.cnki.zhjbkz.2021.07.004.
|
[4] |
Xia L, Wei W, Zhou ZL, et al. The environmental and socioeconomic effects of tuberculosis patients in the southwest of China: a population-based study. Public Health, 2024, 227: 131-140. doi:10.1016/j.puhe.2023.10.043.
pmid: 38219290
|
[5] |
Manjourides J, Lin HH, Shin S, et al. Identifying multidrug resistant tuberculosis transmission hotspots using routinely collected data. Tuberculosis (Edinb), 2012, 92(3): 273-279. doi:10.1016/j.tube.2012.02.003.
|
[6] |
Theron G, Jenkins HE, Cobelens F, et al. Data for action: collection and use of local data to end tuberculosis. Lancet, 2015, 386(10010): 2324-2333. doi:10.1016/s0140-6736(15)00321-9.
pmid: 26515676
|
[7] |
Alene KA, Xu Z, Bai L, et al. Spatiotemporal Patterns of Tuberculosis in Hunan Province, China. Int J Environ Res Public Health, 2021, 18(13):6778. doi:10.3390/ijerph18136778.
|
[8] |
王嘉敏, 周艺彪. 空间统计模型的特点及其在传染病防控中的应用. 安徽预防医学杂志, 2022, 28(6): 437-442. doi:10.19837/j.cnki.ahyf.2022.06.001.
|
[9] |
杨浩, 孙建国, 黄卓, 等. 基于贝叶斯时空模型的甘肃省生态风险变化特征. 生态科学, 2024, 43(5): 43-51. doi:10.14108/j.cnki.1008-8873.2024.05.006.
|
[10] |
Bruederle A, Hodler R. Nighttime lights as a proxy for human development at the local level. PLoS One, 2018, 13(9): e0202231. doi:10.1371/journal.pone.0202231.
|
[11] |
Luenam A, Puttanapong N. Spatial association between COVID-19 incidence rate and nighttime light index. Geospat Health, 2022, 17(s1). doi:10.4081/gh.2022.1066.
|
[12] |
Zheng Y, Zhang L, Wang L, et al. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. BMC Infect Dis, 2020, 20(1): 300. doi:10.1186/s12879-020-05033-3.
|
[13] |
Nath P, Saha P, Middya AI, et al. Long-term time-series pollution forecast using statistical and deep learning methods. Neural Comput Appl, 2021, 33(19): 12551-12570. doi:10.1007/s00521-021-05901-2.
|
[14] |
Moran PA. Notes on Continuous Stochastic Phenomena. Biometrika, 1950, 37(1/2): 17-23.
|
[15] |
Lambert D. Zero-Inflated Poisson Regression, With an Application to Defects in Manufacturing. Technometrics, 1992, 34(1): 1-14. doi:10.1080/00401706.1992.10485228.
|
[16] |
Cheung YB. Zero-inflated models for regression analysis of count data: a study of growth and development. Stat Med, 2002, 21(10): 1461-1469. doi:10.1002/sim.1088.
pmid: 12185896
|
[17] |
Lawson AB, Song HR, Cai B, et al. Space-time latent component modeling of geo-referenced health data. Stat Med, 2010, 29(19): 2012-2027. doi:10.1002/sim.3917.
pmid: 20683893
|
[18] |
广东省人民政府办公厅. 印发广东省结核病防治规划(2011—2015年)的通知. 粤府办〔2012〕34号. 2012-04-26.
|
[19] |
Yun W, Huijuan C, Long L, et al. Time trend prediction and spatial-temporal analysis of multidrug-resistant tuberculosis in Guizhou Province, China, during 2014—2020. BMC Infect Dis, 2022, 22(1): 525. doi:10.1186/s12879-022-07499-9.
|
[20] |
Li Q, Liu M, Zhang Y, et al. The spatio-temporal analysis of the incidence of tuberculosis and the associated factors in mainland China, 2009—2015. Infect Genet Evol, 2019, 75: 103949. doi:10.1016/j.meegid.2019.103949.
|
[21] |
卓文基, 魏然, 陈燕梅, 等. 2014—2020年广东省不同年龄段结核病患者耐药特征及应对防治策略. 实用医学杂志, 2024, 40(5): 702-707. doi:10.3969/j.issn.1006-5725.2024.05.019.
|
[22] |
朱高培, 朱乐乐, 孟马承, 等. 零膨胀负二项回归模型在共存疾病影响因素研究中的应用. 中华疾病控制杂志, 2018, 22(10): 1063-1066. doi:10.16462/j.cnki.zhjbkz.2018.10.020.
|
[23] |
Jeong J, Kim M, Choi J. Investigating the spatio-temporal variation of hepatitis A in Korea using a Bayesian model. Front Public Health, 2022, 10: 1085077. doi:10.3389/fpubh.2022.1085077.
|
[24] |
Song C, He Y, Bo Y, et al. Risk Assessment and Mapping of Hand, Foot, and Mouth Disease at the County Level in Mainland China Using Spatiotemporal Zero-Inflated Bayesian Hierarchical Models. Int J Environ Res Public Health, 2018, 15(7):1476. doi:10.3390/ijerph15071476.
|
[25] |
梁永玉, 田茂再. 基于分层贝叶斯时空Poisson模型的流行病建模研究. 系统科学与数学, 2022, 42(2): 462-472. doi:10.12341/jssms20374.
|
[26] |
Xiao Y, He L, Chen Y, et al. The influence of meteorological factors on tuberculosis incidence in Southwest China from 2006 to 2015. Sci Rep, 2018, 8(1): 10053. doi:10.1038/s41598-018-28426-6.
|
[27] |
Guo C, Du Y, Shen SQ, et al. Spatiotemporal analysis of tuberculosis incidence and its associated factors in mainland China. Epidemiol Infect, 2017, 145(12): 2510-2519. doi:10.1017/s0950268817001133.
pmid: 28595668
|
[28] |
Nardell EA. Catching droplet nuclei: toward a better understanding of tuberculosis transmission. Am J Respir Crit Care Med, 2004, 169(5): 553-554. doi:10.1164/rccm.2401003.
|
[29] |
孙赫璘. 2014—2019年吉林省结核病时间序列分析及耐药结核病流行特征. 吉林:吉林大学, 2021. doi:10.27162/d.cnki.gjlin.2021.003025.
|
[30] |
李文辉. 东莞市肺结核发病状况的时空聚集规律及影响因素研究. 广州:广东药科大学, 2021. doi:10.27690/d.cnki.ggdyk.2021.000191.
|
[31] |
Horton KC, Sumner T, Houben R, et al. A Bayesian Approach to Understanding Sex Differences in Tuberculosis Disease Burden. Am J Epidemiol, 2018, 187(11): 2431-2438. doi:10.1093/aje/kwy131.
pmid: 29955827
|
[32] |
Lu L, Li M, Chen C, et al. Outbreak of tuberculosis in internet cafes amongst young internal migrants without fixed abode in Shanghai, China, 2018—2019. J Travel Med, 2023, 30(1):taac121. doi:10.1093/jtm/taac121.
|
[33] |
Nellums LB, Rustage K, Hargreaves S, et al. Multidrug-resistant tuberculosis treatment adherence in migrants: a systematic review and meta-analysis. BMC Med, 2018, 16(1): 27. doi:10.1186/s12916-017-1001-7.
|
[34] |
Lienhardt C, Glaziou P, Uplekar M, et al. Global tuberculosis control: lessons learnt and future prospects. Nat Rev Microbiol, 2012, 10(6): 407-416. doi:10.1038/nrmicro2797.
pmid: 22580364
|
[35] |
Lönnroth K, Castro KG, Chakaya JM, et al. Tuberculosis control and elimination 2010-50: cure, care, and social development. Lancet, 2010, 375(9728): 1814-1829. doi:10.1016/s0140-6736(10)60483-7.
|
[36] |
Wang Q, Guo L, Wang J, et al. Spatial distribution of tuberculosis and its socioeconomic influencing factors in mainland China 2013—2016. Trop Med Int Health, 2019, 24(9): 1104-1113. doi:10.1111/tmi.13289.
pmid: 31314953
|
[37] |
Wubuli A, Xue F, Jiang D, et al. Socio-Demographic Predictors and Distribution of Pulmonary Tuberculosis (TB) in Xinjiang, China: A Spatial Analysis. PLoS One, 2015, 10(12): e0144010. doi:10.1371/journal.pone.0144010.
|