[1] |
Pang Y, An J, Shu W, et al. Epidemiology of Extrapulmonary Tuberculosis among Inpatients, China, 2008—2017. Emerg Infect Dis, 2019, 25(3): 457-464. doi:10.3201/eid2503.180572.
pmid: 30789144
|
[2] |
Chen JH, Yam WC, Ngan AH, et al. Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol, 2013, 51(12):3981-3987. doi:10.1128/JCM.01437-13.
pmid: 24048537
|
[3] |
Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 2003, 14(3): 303-310. doi:10.1016/s0958-1669(03)00067-3.
|
[4] |
Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet, 2004, 38: 525-552. doi:10.1146/annurev.genet.38.072902.091216.
pmid: 15568985
|
[5] |
Tringe SG, Von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities. Science, 2005, 308(5721): 554-557. doi:10.1126/science.1107851.
pmid: 15845853
|
[6] |
Palacios G, Druce J, Du L, et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med, 2008, 358(10): 991-998. doi:10.1056/NEJMoa073785.
|
[7] |
Chen P, Sun W, He Y. Comparison of metagenomic next-generation sequencing technology, culture and GeneXpert MTB/RIF assay in the diagnosis of tuberculosis. J Thorac Dis, 2020, 12(8): 4014-4024. doi:10.21037/jtd-20-1232.
pmid: 32944313
|
[8] |
Yu G, Wang X, Zhu P, et al. Comparison of the efficacy of metagenomic next-generation sequencing and Xpert MTB/RIF in the diagnosis of tuberculous meningitis. J Microbiol Methods, 2021, 180: 106124. doi:10.1016/j.mimet.2020.106124.
|
[9] |
Zhou X, Wu H, Ruan Q, et al. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol, 2019, 9: 351. doi:10.3389/fcimb.2019.00351.
|
[10] |
罗越, 胡洋洋, 张兴, 等. 《中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识》解读. 河北医科大学学报, 2021, 42(7): 745-749. doi:10.3969/j.issn.1007-3205.2021.07.001.
|
[11] |
Liu X, Chen Y, Ouyang H, et al. Tuberculosis Diagnosis by Metagenomic Next-generation Sequencing on Bronchoalveolar Lavage Fluid: a cross-sectional analysis. Int J Infect Dis, 2021, 104: 50-57. doi:10.1016/j.ijid.2020.12.063.
|
[12] |
孙雯雯, 顾瑾, 范琳. 宏基因组二代测序对不同类型结核病的诊断价值. 中华结核和呼吸杂志, 2021, 44(2): 96-100. doi:10.3760/cma.j.cn112147-20200316-00343.
|
[13] |
Sun W, Lu Z, Yan L. Clinical efficacy of metagenomic next-generation sequencing for rapid detection of Mycobacterium tuberculosis in smear-negative extrapulmonary specimens in a high tuberculosis burden area. Int J Infect Dis, 2021, 103:91-96. doi:10.1016/j.ijid.2020.11.165.
|
[14] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020, 81(4):567-574. doi:10.1016/j.jinf.2020.08.004.
|
[15] |
Ai JW, Li Y, Cheng Q, et al. Diagnosis of local hepatic tuberculosis through next-generation sequencing: Smarter, faster and better. Clin Res Hepatol Gastroenterol, 2018, 42(3): 178-181. doi:10.1016/j.clinre.2018.04.007.
|
[16] |
Yang J, Yang F, Ren L, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol, 2011, 49(10): 3463-3469. doi:10.1128/JCM.00273-11.
pmid: 21813714
|
[17] |
中华医学会检验医学分会临床微生物学组,中华医学会微生物学与免疫学分会临床微生物学组,中国医疗保健国际交流促进会临床微生物与感染分会. 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识. 中华检验医学杂志, 2021, 44(2): 107-120. doi:10.3760/cma.j.cn114452-20201026-00794.
|
[18] |
Dickson RP, Huffnagle GB. The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLoS Pathog, 2015, 11(7): e1004923. doi:10.1371/journal.ppat.1004923.
|
[19] |
Feehery GR, Yigit E, Oyola SO, et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One, 2013, 8(10): e76096. doi:10.1371/journal.pone.0076096.
|
[20] |
Dulanto Chiang A, Dekker JP. From the Pipeline to the Bedside: Advances and Challenges in Clinical Metagenomics. J Infect Dis, 2020, 221(Suppl 3): S331-S340. doi:10.1093/infdis/jiz151.
|
[21] |
中华医学会检验医学分会. 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识. 中华检验医学杂志, 2020, 43(12): 1181-1195. doi:10.3760/cma.j.cn114452-20200903-00704.
|
[22] |
Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis, 2018, 67(suppl_2): S231-S240. doi:10.1093/cid/ciy693.
|
[23] |
Nguyen MH, Levy NS, Ahuja SD, et al. Factors Associated With Sputum Culture-Negative vs Culture-Positive Diagnosis of Pulmonary Tuberculosis. JAMA Netw Open, 2019, 2(2): e187617. doi:10.1001/jamanetworkopen.2018.7617.
|
[24] |
Warren RM, Victor TC, Streicher EM, et al. Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med, 2004, 169(5):610-614. doi:10.1164/rccm.200305-714OC.
|
[25] |
Wang JY, Hsu HL, Yu MC, et al. Mixed infection with Beijing and non-Beijing strains in pulmonary tuberculosis in Taiwan: prevalence, risk factors, and dominant strain. Clin Microbiol Infect, 2011, 17(8): 1239-1245. doi:10.1111/j.1469-0691.2010.03401.x.
|
[26] |
Shamputa IC, Rigouts L, Eyongeta LA, et al. Genotypic and phenotypic heterogeneity among Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients. J Clin Microbiol, 2004, 42(12):5528-5536. doi:10.1128/JCM.42.12.5528-5536.2004.
pmid: 15583277
|
[27] |
Hingley-Wilson SM, Casey R, Connell D, et al. Undetected multidrug-resistant tuberculosis amplified by first-line therapy in mixed infection. Emerg Infect Dis, 2013, 19(7): 1138-1141. doi:10.3201/1907.130313.
pmid: 23764343
|
[28] |
Hu Y, Cheng M, Liu B, et al. Metagenomic analysis of the lung microbiome in pulmonary tuberculosis-a pilot study. Emerg Microbes Infect, 2020, 9(1): 1444-1452. doi:10.1080/22221751.2020.1783188.
|
[29] |
Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ, 2017, 356: j831. doi:10.1136/bmj.j831.
|
[30] |
Negi S, Pahari S, Bashir H, et al. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Front Immunol, 2019, 10: 1142. doi:10.3389/fimmu.2019.01142.
|
[31] |
Luo M, Liu Y, Wu P, et al. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Front Physiol, 2017, 8: 822. doi:10.3389/fphys.2017.00822.
pmid: 29204120
|
[32] |
Hong BY, Paulson JN, Stine OC, et al. Meta-analysis of the lung microbiota in pulmonary tuberculosis. Tuberculosis (Edinb), 2018, 109: 102-108. doi:10.1016/j.tube.2018.02.006.
|
[33] |
Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol, 2012, 7(1): 73-89. doi:10.2217/fmb.11.135.
pmid: 22191448
|
[34] |
Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol, 2004, 6(9): 981-989. doi:10.1111/j.1462-2920.2004.00664.x.
pmid: 15305923
|
[35] |
Charalampous T, Kay GL, Richardson H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol, 2019, 37(7):783-792. doi:10.1038/s41587-019-0156-5.
pmid: 31235920
|
[36] |
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med, 2018, 197(4): 524-528. doi:10.1164/rccm.201706-1097LE.
|
[37] |
Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet, 2019, 20(6): 341-355. doi:10.1038/s41576-019-0113-7.
pmid: 30918369
|
[38] |
Weyrich LS, Farrer AG, Eisenhofer R, et al. Laboratory contamination over time during low-biomass sample analysis. Mol Ecol Resour, 2019, 19(4):982-996. doi:10.1111/1755-0998.13011.
pmid: 30887686
|
[39] |
Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol, 2019, 14: 319-338. doi:10.1146/annurev-pathmechdis-012418-012751.
pmid: 30355154
|