Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (3): 279-287.doi: 10.19982/j.issn.1000-6621.20230356
• Original Articles • Previous Articles Next Articles
Liu Xueyan1, Wang Fang2, Li Chunhua1, Tang Guangxiao1, Zheng Jiaofeng1, Wang Huiqiu1, Li Yurui1, Wang Jia’nan1, Shu Weiqiang1, Lyu Shengxiu1()
Received:
2023-10-08
Online:
2024-03-10
Published:
2024-03-05
Contact:
Lyu Shengxiu, Email: Supported by:
CLC Number:
Liu Xueyan, Wang Fang, Li Chunhua, Tang Guangxiao, Zheng Jiaofeng, Wang Huiqiu, Li Yurui, Wang Jia’nan, Shu Weiqiang, Lyu Shengxiu. Construction and evaluation of a CT-based deep learning model for the auxiliary diagnosis of secondary tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(3): 279-287. doi: 10.19982/j.issn.1000-6621.20230356
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230356
模型/类别 | 曲线下面积 | 敏感度 | 特异度 | 准确率 | 精确率 | F1值 |
---|---|---|---|---|---|---|
BasicNet | ||||||
正常肺部 | 94.1 | 80.0 | 91.7 | 88.7 | 77.0 | 78.5 |
普通肺部感染 | 86.7 | 64.3 | 89.1 | 82.7 | 66.9 | 65.6 |
继发性肺结核 | 87.4 | 77.8 | 79.0 | 78.4 | 77.8 | 77.8 |
宏平均 | 89.4 | 74.0 | 86.6 | 83.3 | 73.9 | 74.0 |
微平均 | 88.9 | 74.9 | 84.8 | 82.2 | 74.8 | 74.9 |
DenseNet | ||||||
正常肺部 | 96.7 | 92.9 | 90.8 | 91.4 | 77.8 | 84.7 |
普通肺部感染 | 89.0 | 68.8 | 90.2 | 84.7 | 70.7 | 69.7 |
继发性肺结核 | 90.6 | 77.5 | 87.1 | 82.4 | 85.0 | 81.1 |
宏平均 | 92.1 | 79.7 | 89.4 | 86.2 | 77.8 | 78.5 |
微平均 | 91.8 | 79.2 | 88.8 | 85.3 | 79.5 | 79.1 |
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1):15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | 高雯琬, 郭建琼, 李同心, 等. 《结核病免疫治疗专家共识(2022年版)》要点解读. 结核与肺部疾病杂志, 2023, 4(3): 194-197. doi:10.19983/j.issn.2096-8493.20230035. |
[3] | 伍小英, 谭守勇, 罗少霞, 等. 广州市2009—2013年肺结核流行状况分析. 广东医学, 2014, 35(21): 3400-3405. |
[4] | Brady AP. Error and discrepancy in radiology: inevitable or avoidable? Insights Imaging, 2017, 8(1):171-182. doi:10.1007/s13244-016-0534-1. |
[5] | Zhou Q, Zhu W, Li F, et al. Transfer Learning of the ResNet-18 and DenseNet-121 Model Used to Diagnose Intracranial Hemorrhage in CT Scanning. Curr Pharm Des, 2022, 28(4): 287-295. doi:10.2174/1381612827666211213143357. |
[6] | 马利利, 饶会林, 唐飞, 等. 肺隐球菌病患者肺部CT影像学表现及临床病理特征分析. 临床军医杂志, 2022, 50(12): 1310-1312, 1316. doi:10.16680/j.1671-3826.2022.12.30. |
[7] |
von Schacky CE, Sohn JH, Liu F, et al. Development and Validation of a Multitask Deep Learning Model for Severity Grading of Hip Osteoarthritis Features on Radiographs. Radiology, 2020, 295(1): 136-145. doi:10.1148/radiol.2020190925.
pmid: 32013791 |
[8] |
Shen L, Wang L, Liu C, et al. Community-acquired pneumonia: Trends in and research on drug resistance and advances in new antibiotics. Biosci Trends, 2021, 15(5): 266-275. doi:10.5582/bst.2021.01342.
pmid: 34483225 |
[9] | Yang W, Ma Y, Wang J, et al. Fungal pneumonia manifesting as cavitary lesions in a critically ill elderly patient. J Infect Dev Ctries, 2019, 13(12):1170-1173. doi:10.3855/jidc.11265. |
[10] | 重庆市医学会放射医学分会胸心学组, 重庆市医学影像医疗质量控制中心. 新型冠状病毒肺部感染放射学检查、诊断规范重庆专家共识. 陆军军医大学学报, 2023, 45(7): 593-605. doi:10.16016/j.2097-0927.202301092. |
[11] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[12] | Shan F, Gao Y, Wang J, et al. Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction. Med Phys, 2021, 48(4):1633-1645. doi:10.1002/mp.14609. |
[13] | Cheng Z, Qin L, Cao Q, et al. Quantitative computed tomography of the coronavirus disease 2019 (COVID-19) pneumonia. Radiol Infect Dis, 2020, 7(2):55-61. doi:10.1016/j.jrid.2020.04.004. |
[14] | Ouyang X, Huo J, Xia L, et al. Dual-Sampling Attention Network for Diagnosis of COVID-19 From Community Acquired Pneumonia. IEEE Trans Med Imaging, 2020, 39(8): 2595-2605. doi:10.1109/TMI.2020.2995508. |
[15] | Zhao X, Qi S, Zhang B, et al. Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning. J Xray Sci Technol, 2019, 27(4): 615-629. doi:10.3233/XST-180490. |
[16] | Skrede OJ, De Raedt S, Kleppe A, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet, 2020, 395(10221): 350-360. doi:10.1016/S0140-6736(19)32998-8. |
[17] |
Chen PT, Wu T, Wang P, et al. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology, 2023, 306(1):172-182. doi:10.1148/radiol.220152.
pmid: 36098642 |
[18] | 吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用. 中国防痨杂志, 2022, 44(1): 91-94. doi:10.19982/j.issn.1000-6621.20210537. |
[19] | Cao XF, Li Y, Xin HN, et al. Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening. Chronic Dis Transl Med, 2021, 7(1): 35-40. doi:10.1016/j.cdtm.2021.02.001. |
[20] |
Kim TK, Yi PH, Hager GD, et al. Refining dataset curation methods for deep learning-based automated tuberculosis screening. J Thorac Dis, 2020, 12(9): 5078-5085. doi:10.21037/jtd.2019.08.34.
pmid: 33145084 |
[21] | Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health, 2021, 3(9): e543-e554. doi:10.1016/S2589-7500(21)00116-3. |
[22] | Natarajan S, Sampath P, Arunachalam R, et al. Early diagnosis and meta-agnostic model visualization of tuberculosis based on radiography images. Sci Rep, 2023, 13(1): 22803. doi:10.1038/s41598-023-49195-x. |
[23] | Ma L, Wang Y, Guo L, et al. Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. J Xray Sci Technol, 2020, 28(5): 939-951. doi:10.3233/XST-200662. |
[24] | 马依迪丽·尼加提, 米日古丽·达毛拉, 张斌, 等. 基于CT深度学习的活动性/非活动性肺结核分类模型构建及验证. 暨南大学学报(自然科学与医学版), 2023, 44(1): 69-77, 86. doi:10.11778/j.jdxb.20220268. |
[25] | Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4293-4306. doi:10.1007/s00259-021-05432-x. |
[26] | 吴树才, 王新举, 纪俊雨, 等. 基于深度学习卷积神经网络的肺结核CT诊断模型效能初探. 中华结核和呼吸杂志, 2021, 44(5): 450-455. doi:10.3760/cma.j.cn112147-20210108-00026. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||