Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (3): 260-266.doi: 10.19982/j.issn.1000-6621.20230450
• Interpretation of Standards • Previous Articles Next Articles
Received:
2023-12-20
Online:
2024-03-10
Published:
2024-03-05
Contact:
Ou Xichao, Email:Supported by:
CLC Number:
Pei Shaojun, Ou Xichao. Interpretation of the World Health Organization’s Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (2nd Edition)[J]. Chinese Journal of Antituberculosis, 2024, 46(3): 260-266. doi: 10.19982/j.issn.1000-6621.20230450
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230450
药物 | 1组(耐药相关突变) | 2组(暂定与耐药相关) | 1组+2组 |
---|---|---|---|
利福平 | |||
敏感度(%,95%CI) | 92.1(91.7~92.5) | 1.1(1.0~1.3) | 93.3(92.9~93.7) |
特异度(%,95%CI) | 97.1(96.9~97.3) | 99.8(99.8~99.9) | 96.9(96.7~97.1) |
阳性预测值(%,95%CI) | 94.5(94.2~94.9) | 76.5(70.8~81.6) | 94.2(93.9~94.6) |
异烟肼 | |||
敏感度(%,95%CI) | 89.6(89.2~90.0) | 2.0(1.8~2.2) | 91.6(91.2~92.0) |
特异度(%,95%CI) | 98.2(98.1~98.4) | 99.7(99.6~99.7) | 97.9(97.8~98.1) |
阳性预测值(%,95%CI) | 97.5(97.2~97.7) | 82.5(78.9~85.7) | 97.1(96.8~97.3) |
乙胺丁醇 | |||
敏感度(%,95%CI) | 81.1(80.3~81.9) | 0.0 | 81.1(80.3~81.9) |
特异度(%,95%CI) | 91.6(91.3~91.9) | 100.0(100.0~100.0) | 91.6(91.3~91.9) |
阳性预测值(%,95%CI) | 71.9(71.0~72.8) | 0.0 | 71.9(71.0~72.8) |
吡嗪酰胺 | |||
敏感度(%,95%CI) | 63.5(62.0~64.9) | 14.6(13.5~15.6) | 78.0(76.8~79.2) |
特异度(%,95%CI) | 98.6(98.5~98.8) | 99.2(99.1~99.3) | 97.9(97.6~98.1) |
阳性预测值(%,95%CI) | 92.4(91.4~93.4) | 82.9(80.1~85.5) | 90.5(89.5~91.4) |
左氧氟沙星 | |||
敏感度(%,95%CI) | 83.6(82.6~84.5) | 1.2(1.0~1.6) | 84.8(83.9~85.7) |
特异度(%,95%CI) | 97.3(97.0~97.5) | 99.6(99.6~99.7) | 96.9(96.7~97.1) |
阳性预测值(%,95%CI) | 89.2(88.4~90.0) | 48.3(40.1~56.6) | 88.1(87.3~89.0) |
莫西沙星 | |||
敏感度(%,95%CI) | 84.8(83.7~85.9) | 0.9(0.6~1.2) | 85.7(84.6~86.8) |
特异度(%,95%CI) | 94.0(93.6~94.3) | 99.5(99.4~99.6) | 93.5(93.2~93.9) |
阳性预测值(%,95%CI) | 75.2(73.9~76.4) | 29.5(21.6~38.4) | 74.0(72.7~75.2) |
贝达喹啉 | |||
敏感度(%,95%CI) | 26.3(23.7~29.1) | 23.0(20.5~25.7) | 49.4(46.3~52.5) |
特异度(%,95%CI) | 99.4(99.3~99.5) | 99.3(99.1~99.4) | 98.7(98.5~98.9) |
阳性预测值(%,95%CI) | 78.2(73.5~82.4) | 72.0(66.8~76.8) | 75.2(71.8~78.4) |
利奈唑胺 | |||
敏感度(%,95%CI) | 27.3(22.8~32.1) | 6.7(4.4~9.7) | 34.0(29.2~39.0) |
特异度(%,95%CI) | 99.8(99.8~99.9) | 100.0(99.9~100.0) | 99.8(99.7~99.9) |
阳性预测值(%,95%CI) | 78.5(70.4~85.2) | 78.1(60.0~90.7) | 78.4(71.3~84.5) |
氯法齐明 | |||
敏感度(%,95%CI) | 4.3(2.9~6.1) | 12.7(10.3~15.4) | 17.0(14.2~20.0) |
特异度(%,95%CI) | 99.8(99.7~99.8) | 98.9(98.7~99.1) | 98.7(98.5~98.9) |
阳性预测值(%,95%CI) | 46.0(33.4~59.1) | 36.0(29.9~42.4) | 38.1(32.6~43.8) |
德拉马尼 | |||
敏感度(%,95%CI) | 0.0(0.0~1.5) | 14.7(10.6~19.7) | 14.7(10.6~19.7) |
特异度(%,95%CI) | 100.0(100.0~100.0) | 99.9(99.8~99.9) | 99.9(99.8~99.9) |
阳性预测值(%,95%CI) | 0.0 | 72.5(58.3~84.1) | 72.5(58.3~84.1) |
阿米卡星 | |||
敏感度(%,95%CI) | 68.9(67.0~70.7) | 4.0(3.2~4.8) | 72.8(71.0~74.6) |
特异度(%,95%CI) | 99.2(99.0~99.3) | 99.2(99.0~99.3) | 98.3(98.1~98.5) |
阳性预测值(%,95%CI) | 90.1(88.7~91.4) | 34.3(28.8~40.1) | 82.8(81.2~84.4) |
链霉素 | |||
敏感度(%,95%CI) | 72.1(71.2~72.9) | 7.6(7.1~8.1) | 79.7(78.9~80.5) |
特异度(%,95%CI) | 97.6(97.4~97.8) | 96.5(96.2~96.8) | 94.1(93.7~94.4) |
阳性预测值(%,95%CI) | 95.2(94.7~95.7) | 58.8(56.1~61.4) | 89.9(89.3~90.5) |
乙硫异烟胺 | |||
敏感度(%,95%CI) | 45.8(44.4~47.1) | 29.1(27.8~30.3) | 74.8(73.6~76.0) |
特异度(%,95%CI) | 94.0(93.6~94.3) | 91.9(91.5~92.3) | 85.9(85.3~86.4) |
阳性预测值(%,95%CI) | 71.7(70.1~73.2) | 54.6(52.7~56.4) | 63.9(62.7~65.1) |
卡那霉素a | |||
敏感度(%,95%CI) | 74.4(73.0~75.9) | 0.4(0.3~0.7) | 74.9(73.4~76.3) |
特异度(%,95%CI) | 96.7(96.5~97.0) | 100.0(99.9~100.0) | 96.7(96.4~96.9) |
阳性预测值(%,95%CI) | 79.4(78.0~80.8) | 66.7(44.7~84.4) | 79.3(77.9~80.7) |
卷曲霉素a | |||
敏感度(%,95%CI) | 61.2(59.1~63.3) | 4.9(4.0~6.0) | 66.2(64.1~68.2) |
特异度(%,95%CI) | 98.0(97.8~98.2) | 99.8(99.7~99.9) | 97.8(97.6~98.1) |
阳性预测值(%,95%CI) | 80.4(78.4~82.3) | 76.1(68.0~83.1) | 80.1(78.1~81.9) |
[1] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[2] | Mohamed S, Köser CU, Salfinger M, et al. Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics?. Eur Respir J, 2021, 57(3): 2004077. doi:10.1183/13993003.04077-2020. |
[3] | World Health Organization. Global tuberculosis report 2013. Geneva: World Health Organization, 2013. |
[4] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organization, 2021. |
[5] | World Health Organization. Technical report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization, 2021. |
[6] | Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J, 2017, 50(6):1701354. doi:10.1183/13993003.01354-2017. |
[7] | Köser CU, Maurer FP, Kranzer K. ‘Those who cannot remember the past are condemned to repeat it’: Drug-susceptibility testing for bedaquiline and delamanid. Int J Infect Dis, 2019, 80S: S32-S35. doi:10.1016/j.ijid.2019.02.027. |
[8] | Alagna R, Cabibbe AM, Miotto P, et al. Is the new WHO definition of extensively drug-resistant tuberculosis easy to apply in practice?. Eur Respir J, 2021, 58(1): 2100959. doi:10.1183/13993003.00959-2021. |
[9] | Ness T, Van LH, Petermane I, et al. Rolling out new anti-tuberculosis drugs without diagnostic capacity. Breathe(Sheff), 2023, 19(2):230084. doi:10.1183/20734735.0084-2023. |
[10] | World Health Organization. Use of targeted next-generation sequencing to detect drug-resistant tuberculosis: rapid communication, July 2023. Geneva: World Health Organization, 2023. |
[11] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. |
[12] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[13] | World Health Organization. Noncommercial culture and drug-susceptibility testing methods for screening patients at risk for multidrug-resistant tuberculosis. Policy statement. Geneva: World Health Organization, 2011. |
[14] | Martin L, Coronel J, Faulx D, et al. A field evaluation of the Hardy TB MODS KitTM for the rapid phenotypic diagnosis of tuberculosis and multi-drug resistant tuberculosis. PLoS One, 2014, 9(9):e107258. doi:10.1371/journal.pone.0107258. |
[15] | World Health Organization. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2018. |
[16] | Matrat S, Veziris N, Mayer C, et al. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrob Agents Chemother, 2006, 50(12):4170-4173. doi:10.1128/AAC.00944-06. |
[17] | Antimycobacterial Susceptibility Testing Group. Updating the approaches to define susceptibility and resistance to anti-tuberculosis agents: implications for diagnosis and treatment. Eur Respir J, 2022, 59(4):2200166. doi:10.1183/13993003.00166-2022. |
[18] |
Köser CU, Robledo J, Shubladze N, et al. Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. Int J Tuberc Lung Dis, 2021, 25(10):791-794. doi:10.5588/ijtld.21.0428.
pmid: 34615575 |
[19] |
Bateson A, Ortiz Canseco J, McHugh TD, et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J Antimicrob Chemother, 2022, 77(6):1685-1693. doi:10.1093/jac/dkac070.
pmid: 35260883 |
[20] | Modlin SJ, Marbach T, Werngren J, et al. Atypical genetic basis of pyrazinamide resistance in monoresistant Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2021, 65(6):e01916-20. doi:10.1128/AAC.01916-20. |
[21] | Antoine R, Gaudin C, Hartkoorn RC. Intragenic distribution of IS6110 in clinical Mycobacterium tuberculosis strains: bioinformatic evidence for gene disruption leading to underdiagnosed antibiotic resistance. Microbiol Spectr, 2021, 9(1):e0001921. doi:10.1128/Spectrum.00019-21. |
[22] | Köser CU, Cirillo DM, Miotto P. How to optimally combine genotypic and phenotypic drug susceptibility testing methods for pyrazinamide. Antimicrob Agents Chemother, 2020, 64(9):e01003-20. doi:10.1128/AAC.01003-20. |
[23] |
Yadon AN, Maharaj K, Adamson JH, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nat Commun, 2017, 8(1):588. doi:10.1038/s41467-017-00721-2.
pmid: 28928454 |
[24] | Köser CU, Georghiou SB, Schön T, et al. On the consequences of poorly defined breakpoints for rifampin susceptibility testing of Mycobacterium tuberculosis complex. J Clin Microbiol, 2021, 59(4):e02328-20. doi:10.1128/JCM.02328-20. |
[25] | Fitzgibbon MM, Roycroft E, Sheehan G, et al. False detection of rifampicin resistance using Xpert MTB/RIF Ultra assay due to an A451V mutation inMycobacterium tuberculosis. JAC Antimicrob Resist, 2021, 3(3):dlab101. doi:10.1093/jacamr/dlab101. |
[26] | Abrahams KA, Batt SM, Gurcha SS, et al. DprE2 is a mole-cular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid. Nat Commun, 2023, 14(1):3828. doi:10.1038/s41467-023-39300-z. |
[27] | Jiang Z, Lu Y, Liu Z, et al. Drug resistance prediction and resistance genes identification in Mycobacterium tuberculosis based on a hierarchical attentive neural network utilizing genome-wide variants. Brief Bioinform, 2022, 23(3): bbac041. doi:10.1093/bib/bbac041. |
[28] |
Gröschel MI, Owens M, Freschi L, et al. GenTB: A user-friendly genome-based predictor for tuberculosis resistance powered by machine learning. Genome Med, 2021, 13(1):138. doi:10.1186/s13073-021-00953-4.
pmid: 34461978 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[10] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[11] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[12] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[13] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[14] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[15] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||