Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (11): 1297-1302.doi: 10.19982/j.issn.1000-6621.20240370
• Editorial • Previous Articles Next Articles
Li Qi, Nie Wenjuan(), Chu Naihui(
)
Received:
2024-08-28
Online:
2024-11-10
Published:
2024-10-31
CLC Number:
Li Qi, Nie Wenjuan, Chu Naihui. Difficulties and challenges faced by short-term treatment regimen for drug-resistant pulmonary tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1297-1302. doi: 10.19982/j.issn.1000-6621.20240370
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240370
[1] | Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis, 2016, 63(7): e147-e195. doi:10.1093/cid/ciw376. |
[2] | Peloquin CA. Pharmacology of the antimycobacterial drugs. Med Clin North Am, 1993, 77(6): 1253-1262. doi:10.1016/s0025-7125(16)30191-2. |
[3] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[4] | 中华医学会结核病学分会. 中国耐多药和利福平耐药结核病治疗专家共识(2019年版). 中华结核和呼吸杂志, 2019, 42(10): 733-749. doi:10.3760/cma.j.issn.1001-0939.2019.10.006. |
[5] | Nahid P, Mase SR, Migliori GB, et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med, 2019, 200(10): e93-e142. doi:10.1164/rccm.201909-1874ST. |
[6] |
Günther G, Ruswa N, Keller PM. Drug-resistant tuberculosis: advances in diagnosis and management. Curr Opin Pulm Med, 2022, 28(3):211-217. doi:10.1097/MCP.0000000000000866.
pmid: 35220372 |
[7] | Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med, 2012, 367(16): 1508-1518. doi:10.1056/NEJMoa1201964. |
[8] | 中华医学会结核病学分会, 抗结核新药贝达喹啉临床应用专家共识编写组. 抗结核新药贝达喹啉临床应用专家共识. 中华结核和呼吸杂志, 2018, 41(6): 461-466. doi:10.3760/cma.j.issn.1001-0939.2018.06.005. |
[9] | 胡旭. 临床医院抗菌药物应用及细菌耐药情况研究. 咸宁: 湖北科技学院, 2020. doi:10.27862/d.cnki.ghkxy.2020.000019. |
[10] | Mirzayev F, Viney K, Linh NN, et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J, 2021, 57(6): 2003300. doi:10.1183/13993003.03300-2020. |
[11] | Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J, 2017, 49(5): 1700387. doi:10.1183/13993003.00387-2017. |
[12] |
Perrineau S, Lachatre M, Lê MP, et al. Long-term plasma pharmacokinetics of bedaquiline for multidrug- and extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2019, 23(1): 99-104. doi:10.5588/ijtld.18.0042.
pmid: 30674381 |
[13] |
Zhu H, Xie L, Liu ZQ, et al. Population pharmacokinetics of bedaquiline in patients with drug-resistant TB. Int J Tuberc Lung Dis, 2021, 25(12):1006-1012. doi:10.5588/ijtld.21.0158.
pmid: 34886931 |
[14] |
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014, 58(5):2979-2981. doi:10.1128/AAC.00037-14.
pmid: 24590481 |
[15] |
Somoskovi A, Bruderer V, Hömke R, et al. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur Respir J, 2015, 45(2):554-557. doi:10.1183/09031936.00142914.
pmid: 25359333 |
[16] | Omar SV, Ismail F, Ndjeka N, et al. Bedaquiline-Resistant Tuberculosis Associated with Rv0678 Mutations. N Engl J Med, 2022, 386(1):93-94. doi:10.1056/NEJMc2103049. |
[17] |
Ntziora F, Falagas ME. Linezolid for the treatment of patients with mycobacterial infections: a systematic review. Int J Tuberc Lung Dis, 2007, 11(6):606-611.
pmid: 17519090 |
[18] |
Migliori GB, Eker B, Richardson MD, et al. A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J, 2009, 34(2): 387-393. doi:10.1183/09031936.00009509.
pmid: 19282348 |
[19] | Park IN, Hong SB, Oh YM, et al. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J Antimicrob Chemother, 2006, 58(3):701-704. doi:10.1093/jac/dkl298. |
[20] | Koh WJ, Kwon OJ, Gwak H, et al. Daily 300 mg dose of linezolid for the treatment of intractable multidrug-resistant and extensively drug-resistant tuberculosis. J Antimicrob Chemother, 2009, 64(2): 388-391. doi:10.1093/jac/dkp171. |
[21] |
Sotgiu G, Centis R, D’Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J, 2012, 40(6):1430-1442. doi:10.1183/09031936.00022912.
pmid: 22496332 |
[22] | Singh B, Cocker D, Ryan H, et al. Linezolid for drug-resistant pulmonary tuberculosis. Cochrane Database Syst Rev, 2019, 3(3):CD012836. doi:10.1002/14651858.CD012836.pub2. |
[23] | Zhou W, Nie W, Wang Q, et al. Linezolid Pharmacokinetics/Pharmacodynamics-Based Optimal Dosing for Multidrug-Resistant Tuberculosis. Int J Antimicrob Agents, 2022, 59(6):106589. doi:10.1016/j.ijantimicag.2022.106589. |
[24] |
Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis, 2003, 3(7): 432-442. doi:10.1016/s1473-3099(03)00671-6.
pmid: 12837348 |
[25] |
Caminero JA, World Health Organization, American Thoracic Society, et al. Treatment of multidrug-resistant tuberculosis: evidence and controversies. Int J Tuberc Lung Dis, 2006, 10(8): 829-837.
pmid: 16898365 |
[26] | World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization, 2006. |
[27] |
Khaliq Y, Zhanel GG. Fluoroquinolone-associated tendinopathy: a critical review of the literature. Clin Infect Dis, 2003, 36(11):1404-1410. doi:10.1086/375078.
pmid: 12766835 |
[28] |
Fish DN. Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy, 2001, 21(10 Pt 2): 253S-272S. doi:10.1592/phco.21.16.253s.33993.
pmid: 11642691 |
[29] |
Maitre T, Petitjean G, Chauffour A, et al. Are moxifloxacin and levofloxacin equally effective to treat XDR tuberculosis?. J Antimicrob Chemother, 2017, 72(8):2326-2333. doi:10.1093/jac/dkx150.
pmid: 28535203 |
[30] |
Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother, 2018, 105: 1353-1359. doi:10.1016/j.biopha.2018.06.023.
pmid: 30021373 |
[31] |
Peloquin CA, Davies GR. The Treatment of Tuberculosis. Clin Pharmacol Ther, 2021, 110(6):1455-1466. doi:10.1002/cpt.2261.
pmid: 33837535 |
[32] | Alghamdi WA, Alsultan A, Al-Shaer MH, et al. Cycloserine Population Pharmacokinetics and Pharmacodynamics in Patients with Tuberculosis. Antimicrob Agents Chemother, 2019, 63(5):e00055-19. doi:10.1128/AAC.00055-19. |
[33] | Curry International Tuberculosis Center. Drug-Resistant Tuberculosis:A Survival Guide for Clinicians, 3rd Ed. Washington, DC: Curry International Tuberculosis Center, 2016. |
[34] |
Court R, Centner CM, Chirehwa M, et al. Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 105: 688-694. doi:10.1016/j.ijid.2021.03.001.
pmid: 33684562 |
[35] | Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med, 2012, 366(23):2151-2160. doi:10.1056/NEJMoa1112433. |
[36] |
von Groote-Bidlingmaier F, Patientia R, Sanchez E, et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir Med, 2019, 7(3): 249-259. doi:10.1016/S2213-2600(18)30426-0.
pmid: 30630778 |
[37] | Lardizabal AA, Khan AN, Bamrah Morris S, et al. Notes from the Field: Acquisition of Delamanid Under a Compassionate Use Program for Extensively Drug-Resistant Tuberculosis-United States, 2017. MMWR Morb Mortal Wkly Rep, 2018, 67(35):996-997. doi:10.15585/mmwr.mm6735a6. |
[38] | World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis: Interim policy guidelines. Geneva: World Health Organization, 2014. |
[39] |
Dooley KE, Rosenkranz SL, Conradie F, et al. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial. Lancet Infect Dis, 2021, 21(7):975-983. doi:10.1016/S1473-3099(20)30770-2.
pmid: 33587897 |
[40] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet, 2012, 380(9846):986-993. doi:10.1016/S0140-6736(12)61080-0.
pmid: 22828481 |
[41] | Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med, 2015, 191(8):943-953. doi:10.1164/rccm.201410-1801OC. |
[42] |
Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet, 2015, 385(9979):1738-1747. doi:10.1016/S0140-6736(14)62002-X.
pmid: 25795076 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||