Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (1): 92-99.doi: 10.19982/j.issn.1000-6621.20230273
• Original Articles • Previous Articles Next Articles
Ye Jiang’e1, Fang Xuehui2, Xiong Yanjun3, Liu Shengsheng4()
Received:
2023-08-07
Online:
2024-01-10
Published:
2024-01-04
Contact:
Liu Shengsheng, Email: Supported by:
CLC Number:
Ye Jiang’e, Fang Xuehui, Xiong Yanjun, Liu Shengsheng. Transcriptomics and machine learning algorithm-based characterization of ferroptosis-related genes in tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(1): 92-99. doi: 10.19982/j.issn.1000-6621.20230273
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230273
序号 | 基因名 | 序号 | 基因名 | 序号 | 基因名 | 序号 | 基因名 |
---|---|---|---|---|---|---|---|
1 | RPL8 | 15 | PEBP1 | 29 | YTHDC2 | 43 | ARF6 |
2 | EMC2 | 16 | MAPK14 | 30 | TRIM26 | 44 | AR |
3 | G6PD | 17 | ATF3 | 31 | PIEZO1 | 45 | MTF1 |
4 | VDAC2 | 18 | FBXW7 | 32 | SRC | 46 | PARP8 |
5 | PIK3CA | 19 | AQP3 | 33 | STAT3 | 47 | PARP10 |
6 | FLT3 | 20 | CYP4F8 | 34 | CISD2 | 48 | PDSS2 |
7 | TFRC | 21 | PEX3 | 35 | CD44 | 49 | OIP5-AS1 |
8 | SLC38A1 | 22 | MAP3K11 | 36 | JUN | 50 | CREB1 |
9 | ATG7 | 23 | GSK3B | 37 | AIFM2 | 51 | FABP4 |
10 | ALOX12 | 24 | MDM2 | 38 | CHMP6 | 52 | TMSB4Y |
11 | ULK1 | 25 | MYCN | 39 | SREBF1 | 53 | CAMKK2 |
12 | MAP1LC3A | 26 | SNX5 | 40 | FXN | 54 | EZH2 |
13 | BID | 27 | MICU1 | 41 | STK11 | 55 | PTPN18 |
14 | CDKN2A | 28 | HOTAIR | 42 | BRD3 | 56 | TERT |
项目 | 名称 | 中文名称 | 调整后P值 |
---|---|---|---|
生物学过程 | cellular response to chemical stress | 细胞对化学应激的反应 | <0.001 |
生物学过程 | regulation of autophagy | 自噬的调节 | <0.001 |
生物学过程 | autophagy of mitochondrion | 线粒体自噬 | <0.001 |
生物学过程 | mitochondrion disassembly | 线粒体分解 | <0.001 |
生物学过程 | regulation of apoptotic signaling pathway | 细胞凋亡信号通路的调控 | <0.001 |
生物学过程 | negative regulation of apoptotic signaling pathway | 细胞凋亡信号途径的负调控 | <0.001 |
生物学过程 | response to metal ion | 对金属离子的反应 | <0.001 |
生物学过程 | organelle disassembly | 细胞器解体 | <0.001 |
生物学过程 | cellular component disassembly | 细胞成分分解 | <0.001 |
生物学过程 | cellular response to oxidative stress | 细胞对氧化应激的反应 | <0.001 |
细胞组分 | mitochondrial outer membrane | 线粒体外膜 | 0.018 |
细胞组分 | autophagosome membrane | 自噬体膜 | 0.018 |
细胞组分 | extrinsic component of organelle membrane | 细胞器膜的外在成分 | 0.018 |
细胞组分 | organelle outer membrane | 细胞器外膜 | 0.018 |
细胞组分 | outer membrane | 外膜 | 0.018 |
细胞组分 | cell leading edge | 细胞前缘 | 0.032 |
细胞组分 | lamellipodium membrane | 薄层膜 | 0.042 |
细胞组分 | extrinsic component of membrane | 膜外成分 | 0.042 |
细胞组分 | basolateral plasma membrane | 基底侧质膜 | 0.061 |
细胞组分 | autophagosome | 自噬体 | 0.061 |
分子功能 | RNA polymerase Ⅱ-specific DNA-binding transcription factor binding | RNA聚合酶Ⅱ特异性DNA结合转录因子结合 | <0.001 |
分子功能 | DNA-binding transcription factor binding | DNA结合型转录因子结合 | <0.001 |
分子功能 | protein serine/threonine/tyrosine kinase activity | 蛋白丝氨酸/苏氨酸/酪氨酸激酶活性 | <0.001 |
分子功能 | DNA-binding transcription activator activity, RNA polymerase Ⅱ-specific | DNA结合型转录激活剂活性,RNA聚合酶Ⅱ特异性 | <0.001 |
分子功能 | DNA-binding transcription activator activity | DNA结合型转录激活剂活性 | <0.001 |
分子功能 | protein serine kinase activity | 蛋白丝氨酸激酶活性 | <0.001 |
分子功能 | ubiquitin protein ligase binding | 泛素蛋白连接酶结合 | 0.009 |
分子功能 | protein N-terminus binding | 蛋白质N端结合 | 0.009 |
分子功能 | protein serine/threonine kinase activity | 蛋白丝氨酸/苏氨酸激酶活性 | 0.009 |
分子功能 | transcription coregulator binding | 转录核心调节因子结合 | 0.009 |
项目 | 名称 | 中文名称 | 调整后P值 |
---|---|---|---|
信号通路 | FoxO signaling pathway | FoxO信号通路 | 0.004 |
信号通路 | EGFR tyrosine kinase inhibitor resistance | 表皮生长因子受体酪氨酸激酶抑制剂的抗药性 | 0.004 |
信号通路 | Cellular senescence | 细胞衰老 | 0.022 |
信号通路 | Inflammatory mediator regulation of TRP channels | 炎症介质对TRP通道的调控 | 0.008 |
信号通路 | T cell receptor signaling pathway | T细胞受体信号通路 | 0.009 |
信号通路 | TNF signaling pathway | TNF信号通路 | 0.012 |
信号通路 | mTOR signaling pathway | mTOR信号通路 | 0.024 |
信号通路 | B cell receptor signaling pathway | B细胞受体信号通路 | 0.024 |
信号通路 | PI3K-Akt signaling pathway | PI3K-Akt信号通路 | 0.024 |
信号通路 | Necroptosis | 坏死 | 0.024 |
信号通路 | Tuberculosis | 结核病 | 0.032 |
信号通路 | NOD-like receptor signaling pathway | NOD样受体信号通路 | 0.034 |
信号通路 | Toll-like receptor signaling pathway | Toll样受体信号通路 | 0.038 |
信号通路 | Th17 cell differentiation | Th17细胞分化 | 0.040 |
信号通路 | Apoptosis | 细胞凋亡 | 0.064 |
基因 | 药物 | 作用关系 | 基因 | 药物 | 作用关系 |
---|---|---|---|---|---|
AR | 十一酸睾酮 | 兴奋剂 | SRC | 伊洛司替布 | 抑制剂 |
AR | 氟氧甲基甾酮 | 兴奋剂 | SRC | 萨拉卡替尼 | 抑制剂 |
AR | 丙甾酮 | 兴奋剂 | SRC | 博苏替尼 | 抑制剂 |
AR | 睾酮 | 兴奋剂 | SRC | kx2-391 | 抑制剂 |
AR | 丙酸睾丸素 | 兴奋剂 | SRC | 普纳替尼 | 抑制剂 |
AR | 尼罗酰胺 | 拮抗剂 | SRC | azm-475271 | 抑制剂 |
AR | 羟基氟他胺 | 拮抗剂 | SRC | enmd-981693 | 抑制剂 |
AR | 屈螺酮 | 拮抗剂 | SRC | enmd-2076 | 抑制剂 |
AR | 半乳甾酮 | 拮抗剂 | SRC | 橙皮苷 | 抑制剂 |
AR | 比卡鲁胺 | 拮抗剂 | SRC | azd-0424 | 抑制剂 |
SRC | 万得他尼 | 抑制剂 | SRC | tg100-801 | 抑制剂 |
SRC | pd-0166285 | 抑制剂 | STK11 | 陶扎色替 | 抑制剂 |
SRC | 尼达尼布 | 抑制剂 | SRC | 达沙替尼 | 多靶点抑制剂 |
SRC | kx2-361 | 抑制剂 | AR | gsk2881078 | 调节剂 |
SRC | xl-228 | 抑制剂 |
[1] | 舒薇, 刘宇红. 精进臻善惟实励新:世界卫生组织《2022年全球结核病报告》解读. 中国防痨杂志, 2023, 45(5):454-457. doi:10.19982/j.issn.1000-6621.20230102. |
[2] | Sia JK, Georgieva M, Rengarajan J. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J Immunol Res, 2015, 2015:747543. doi:10.1155/2015/747543. |
[3] | Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med, 2019, 216(3):556-570. doi:10.1084/jem.20181776. |
[4] | Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res, 2023, 51(D1):D571-D582. doi:10.1093/nar/gkac935. |
[5] | Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2021, 2(3):100141. doi:10.1016/j.xinn.2021.100141. |
[6] | 王娉, 郭鹏江, 夏志明. Logistic模型中参数的自适应Lasso估计. 西北大学学报(自然科学版), 2012, 42(5):719-722. doi:10.16152/j.cnki.xdxbzr.2012.05.034. |
[7] | 王俭臣, 单甘霖, 张岐龙, 等. 基于改进SVM-RFE的特征选择方法研究. 微计算机应用, 2011, 32(2):70-74. |
[8] |
Freshour SL, Kiwala S, Cotto KC, et al. Integration of the Drug-Gene Interaction Database(DGIdb 4.0)with open crowdsource efforts. Nucleic Acids Res, 2021, 49(D1):D1144-D1151. doi:10.1093/nar/gkaa1084.
pmid: 33237278 |
[9] | Arnold FM, Weber MS, Gonda I, et al. The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature, 2020, 580(7803):413-417. doi:10.1038/s41586-020-2136-9. |
[10] | Agnes M, Kasimati EM, Inclán M, et al. Metal-binding cyclodextrins: Synthesis and complexation with Zn2+ and Ga3+ cations towards antimicrobial applications. Carbohydr Polym, 2023, 321:121323. doi:10.1016/j.carbpol.2023.121323. |
[11] |
Choudhury M, Koduru TN, Kumar N, et al. Iron uptake and transport by the carboxymycobactin-mycobactin siderophore machinery of Mycobacterium tuberculosis is dependent on the iron-regulated protein HupB. Biometals, 2021, 34(3):511-528. doi:10.1007/s10534-021-00292-2.
pmid: 33609202 |
[12] |
Agranoff D, Krishna S. Metal ion transport and regulation in Mycobacterium tuberculosis. Front Biosci, 2004, 9:2996-3006.
doi: 10.2741/1454 URL |
[13] |
Qiang L, Zhang Y, Lei Z, et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat Commun, 2023, 14(1):1430. doi:10.1038/s41467-023-37148-x.
pmid: 36932056 |
[14] |
Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res, 2017, 121(9):1092-1101. doi:10.1161/CIRCRESAHA.117.311312.
pmid: 28794054 |
[15] | Converse A, Genuise H, Bennett TL, et al. The membrane androgen receptor ZIP 9 (SCL39A9) maintains ovarian homeostasis by mediating post-ovulatory follicle breakdown in zebrafish. Gen Comp Endocrinol, 2023, 340:114323. doi:10.1016/j.ygcen.2023.114323. |
[16] | Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells, 2020, 9(12):2653. doi:10.3390/cells9122653. |
[17] | Haraka F, Kakolwa M, Schumacher SG, et al. Impact of the diagnostic test Xpert MTB/RIF on patient outcomes for tuberculosis. Cochrane Database Syst Rev, 2021, 5(5):CD012972. doi:10.1002/14651858.CD012972.pub2. |
[18] | 姚向阳, 邓晨希, 刘伟, 等. 4种转录组标志物用于活动性结核的诊断研究. 中国人兽共患病学报, 2022, 38(3):210-216. doi:10.3969/j.issn.1002-2694.2022.00.004. |
[1] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[2] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[3] | Chen Feifei, Zheng Yongzhi, Wu Sufang, Kang Qian, Jin Chunyang. Regulating effect of reactive oxygen species/protein kinase RNA-like endoplasmic reticulum kinase signaling axis on BCG-induced ferroptosis in mouse macrophages [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1448-1458. |
[4] | Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. |
[5] | He Ping, Wang Yiting, Song Zexuan, Xia Hui, Wang Shengfen, He Wencong, Zheng Yang, Zhao Yanlin. Preliminary study on the gene function of Mycobacterium tuberculosis Rv2333c in macrophages [J]. Chinese Journal of Antituberculosis, 2023, 45(6): 566-574. |
[6] | Duan Yuheng, Zhang Lanyue, Dong Jing, Shi Yuting, Jia Hongyan, Li Zihui, Xing Aiying, Du Boping, Sun Qi, Pan Liping, Zhu Chuanzhi, Zhang Zongde. Effects of acetyltransferase fadA3 on acetylation of host protein and in vivo survival of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(4): 391-400. |
[7] | ZHANG Lan-yue,GENG Yi-man,JIA Hong-yan,XIAO Jing,LI Zi-hui,PAN Li-ping,SUN Yi-cheng,ZHANG Zong-de. Preliminary study on the gene function of a novel toxin-antitoxin system MSMEG_3435-3436 in Mycobacterium smegmatis [J]. Chinese Journal of Antituberculosis, 2020, 42(2): 133-142. |
[8] | Guang-gui DING,Xing HE,Juan LIANG,Ya-ya LIU,Min OU,Jian LU,Guo-liang ZHANG. Effect of miR-20a-5p on the expression of apoptosis-related genes in Mycobacterium tuberculosis-infected human macrophages [J]. Chinese Journal of Antituberculosis, 2019, 41(7): 747-753. |
[9] | Xiao-juan DING,Yi LIU,Tao SUN,Xiao-dan ZHOU,Chuan-you LI,Hai-hong FANG. Ra1362 modulates biofilm development and dormancy of Mycobacterium tuberculosis through c-di-GMP in H37Ra [J]. Chinese Journal of Antituberculosis, 2018, 40(6): 616-621. |
[10] | ZHAN Sen-lin, ZHANG Guo-liang, ZHONG Hong-jian, JIN Xiao-fei, LIN Qiao, ZHANG Ming-xia, CHEN Xin-chun, ZHOU Bo-ping. The induction of type Ⅰ interferon by different M. tuberculosis strains and its expression in the peripheral blood of the patients with tuberculosis [J]. Chinese Journal of Antituberculosis, 2015, 37(1): 35-39. |
[11] | ZHANG Guo-liang,ZHAN Sen-lin,ZHONG Hong-jian,LIN Qiao,WANG Wen-fei,JIN Xiao-fei,ZHANG Ming-xia,CHEN Xin-chun. Down-regulation of IFNAR gene in macrophage induced by Mycobacterium tuberculosis and its role in peripheral bloods of patients with tuberculosis [J]. Chinese Journal of Antituberculosis, 2014, 36(6): 482-486. |
[12] | HUANG Mai-ling,WU Xiao-guang,MA Li-ping,GAO Meng-qiu,CHEN Hong-mei,LIU Rong-mei,XIE Li,ZHANG Li-qun. Clinical analysis on 33 elder patients with acute hematogenous disseminated pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2013, 35(11): 927-929. |
[13] | XU Shu-ming,CHENG Lin-xian,YANG Xuan-qin,XIN Lei,FAN Shang-fei. Analysis of 33 cases of atypical pulmonary tuberculosis ball by CT images [J]. Chinese Journal of Antituberculosis, 2013, 35(11): 930-933. |
[14] | CHEN Qiu-lan,ZHOU Lin,WANG Ni,HU Dai-yu,LI Fang,CHEN Ming-ting. Exploration and effect evaluation of the intervention of providing transportation subsidies to pulmonary tuberculosis patients in two counties in China [J]. Chinese Journal of Antituberculosis, 2012, 34(10): 642-646. |
[15] | WANG Juan, HUANG Yu-hong, CHEN Yi, LI Yan, PENG Yi, PAN Jia-hui, WANG Jun, LIN Yong-cheng, LAI Xiao-min. The anti-tuberculosis activity of metal complexes of fusaric acid and their effect on gene expressions of M.tuberculosis [J]. Chinese Journal of Antituberculosis, 2012, 34(04): 224-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||