Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (12): 1198-1204.doi: 10.19982/j.issn.1000-6621.20230265
• Review Articles • Previous Articles Next Articles
Wu Xianjin1, Huang Haiyong1, Xiao Leyao2, Xu Junfa2()
Received:
2023-07-31
Online:
2023-12-10
Published:
2023-11-27
Contact:
Xu Junfa,Email: Supported by:
CLC Number:
Wu Xianjin, Huang Haiyong, Xiao Leyao, Xu Junfa. Research progress on macrophage polarization and Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2023, 45(12): 1198-1204. doi: 10.19982/j.issn.1000-6621.20230265
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230265
[1] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] | 罗红, 郑碧英, 徐军发. 巨噬细胞凋亡抗结核分枝杆菌感染的研究进展. 细胞与分子免疫学杂志, 2019, 35(7): 665-670. doi:10.13423/j.cnki.cjcmi.008849. |
[3] |
Murray PJ. Macrophage Polarization. Annu Rev Physiol, 2017, 79: 541-566. doi:10.1146/annurev-physiol-022516-034339.
pmid: 27813830 |
[4] | Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol, 2019, 10: 1-14. doi:10.3389/fimmu.2019.01084. |
[5] | 唐俭, 陈旭昕, 韩志海. 巨噬细胞极化及极化调控的研究进展. 转化医学杂志, 2019, 8(6): 373-376. |
[6] | Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med, 2016, 21(5): 941-954. doi:10.1111/jcmm.13034. |
[7] | Recalcati S, Gammella E, Cairo G. Ironing out Macrophage Immunometabolism. Pharmaceuticals (Basel), 2019, 12(2): 94. doi:10.3390/ph12020094. |
[8] | Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol, 2022, 13:936167. doi:10.3389/fimmu.2022.936167. |
[9] | Ahmad F, Rani A, Alam A, et al. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol, 2022, 13: 747799. doi:10.3389/fimmu.2022.747799. |
[10] | Zhang YH, He M, Wang Y, et al. Modulators of the Balance between M1 and M2 Macrophages during Pregnancy. Front Immunol, 2017, 8: 120. doi:10.3389/fimmu.2017.00120. |
[11] | Zhai W, Wu F, Zhang Y, et al. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci, 2019, 20(2): 340. doi:10.3390/ijms20020340. |
[12] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 2018, 233(9): 6425-6440. doi:10.1002/jcp.26429.
pmid: 29319160 |
[13] | Röszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm, 2015, 2015: 816460. doi:10.1155/2015/816460. |
[14] | Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage Polari-zation and Osteoporosis: A Review. Nutrients, 2020, 12(10): 2999. doi:10.3390/nu12102999. |
[15] | Silva Miranda M, Breiman A, Allain S, et al. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol, 2012, 2012: 139127. doi:10.1155/2012/139127. |
[16] |
Cohen SB, Gern BH, Delahaye JL, et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe, 2018, 24(3): 439-446. e4. doi:10.1016/j.chom.2018.08.001.
pmid: 30146391 |
[17] |
Cohen SB, Gern BH, Urdahl KB. The Tuberculous Granuloma and Preexisting Immunity. Annu Rev Immunol, 2022, 40: 589-614. doi:10.1146/annurev-immunol-093019-125148.
pmid: 35130029 |
[18] | 于佳佳, 唐神结. 巨噬细胞极化在结核病中的作用研究进展. 中华临床感染病杂志, 2019, 12(3): 229-235. doi:10.3760/cma.j.issn.1674-2397.2019.03.014. |
[19] | Huang Z, Luo Q, Guo Y, et al. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro. PLoS One, 2015, 10(6): e0129744. doi:10.1371/journal.pone.0129744. |
[20] | Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes (Basel), 2010, 1(3): 413-426. doi:10.3390/genes1030413. |
[21] |
Cho HJ, Lim YJ, Kim J, et al. Different macrophage polarization between drug-susceptible and multidrug-resistant pulmonary tuberculosis. BMC Infect Dis, 2020, 20(1): 81. doi:10.1186/s12879-020-4802-9.
pmid: 31996142 |
[22] |
Kinsella RL, Zhu DX, Harrison GA, et al. Perspectives and Advances in the Understanding of Tuberculosis. Annu Rev Pathol, 2021, 16: 377-408. doi:10.1146/annurev-pathol-042120-032916.
pmid: 33497258 |
[23] |
Prados-Rosales R, Baena A, Martinez LR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest, 2011, 121(4): 1471-1483. doi:10.1172/JCI44261.
pmid: 21364279 |
[24] | Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol, 2017, 14(12): 963-975. doi:10.1038/cmi.2017.88. |
[25] | Naqvi KF, Endsley JJ. Myeloid C-Type Lectin Receptors in Tuberculosis and HIV Immunity: Insights Into Co-infection? Front Cell Infect Microbiol, 2020, 10: 263. doi:10.3389/fcimb.2020.00263. |
[26] |
Lugo-Villarino G, Troegeler A, Balboa L, et al. The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis. Front Immunol, 2018, 9: 1123. doi:10.3389/fimmu.2018.01123.
pmid: 29946317 |
[27] |
Huang Z, Gao C, Chi X, et al. IL-37 Expression is Upregulated in Patients with Tuberculosis and Induces Macrophages Towards an M2-like Phenotype. Scand J Immunol, 2015, 82(4): 370-379. doi:10.1111/sji.12326.
pmid: 26073153 |
[28] | Guler R, Parihar SP, Savvi S, et al. IL-4Ralpha-dependent alternative activation of macrophages is not decisive for Mycobacterium tuberculosis pathology and bacterial burden in mice. PLoS One, 2015, 10(3): e0121070. doi:10.1371/journal.pone.0121070. |
[29] |
García-González G, Sánchez-González A, Hernández-Bello R, et al. Triggering of protease-activated receptors (PARs) induces alternative M2 macrophage polarization with impaired plasticity. Mol Immunol, 2019, 114: 278-288. doi:10.1016/j.molimm.2019.08.004.
pmid: 31419704 |
[30] | Chen D, Li G, Fu X, et al. Wnt5a Deficiency Regulates Inflammatory Cytokine Secretion, Polarization, and Apoptosis in Mycobacterium tuberculosis-Infected Macrophages. DNA Cell Biol, 2017, 36(1): 58-66. doi:10.1089/dna.2016.3418. |
[31] | Refai A, Gritli S, Barbouche MR, et al. Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype. Front Cell Infect Microbiol, 2018, 8: 327. doi:10.3389/fcimb.2018.00327. |
[32] |
Khan A, Zhang K, Singh VK, et al. Human M1 macrophages express unique innate immune response genes after mycobacterial infection to defend against tuberculosis. Commun Biol, 2022, 5(1): 480. doi:10.1038/s42003-022-03387-9.
pmid: 35590096 |
[33] | Singh VK, Chau E, Mishra A, et al. CD44 receptor targeted nanoparticles augment immunity against tuberculosis in mice. J Control Release, 2022, 349: 796-811. doi:10.1016/j.jconrel.2022.07.040. |
[34] | Shobaki N, Sato Y, Suzuki Y, et al. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. J Control Release, 2020, 325: 235-248. doi:10.1016/j.jconrel.2020.07.001. |
[35] | Wang C, Zhang Y, Dong Y. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications. Acc Chem Res, 2021, 54(23): 4283-4293. doi:10.1021/acs.accounts.1c00550. |
[36] | Liang T, Chen J, Xu G, et al. STAT1 and CXCL 10 involve in M1 macrophage polarization that may affect osteolysis and bone remodeling in extrapulmonary tuberculosis. Gene, 2022, 809: 146040. doi:10.1016/j.gene.2021.146040. |
[37] | Arish M, Naz F. Sphingosine-1-phosphate receptors 2 and 3 reprogram resting human macrophages into M1 phenotype following mycobacteria infection. Curr Res Immunol, 2022, 3: 110-117. doi:10.1016/j.crimmu.2022.05.004. |
[38] | Wan M, Tang X, Rekha RS, et al. Prostaglandin E2 suppresses hCAP18/LL-37 expression in human macrophages via EP2/EP4: implications for treatment of Mycobacterium tuberculosis infection. FASEB J, 2018, 32(5): 2827-2840. doi:10.1096/fj.201701308. |
[39] | Ge G, Jiang H, Xiong J, et al. Progress of the Art of Macrophage Polarization and Different Subtypes in Mycobacterial Infection. Front Immunol, 2021, 12: 752657. doi:10.3389/fimmu.2021.752657. |
[40] | Gail DP, Suzart VG, Du W, et al. Mycobacterium tuberculosis impairs human memory CD4+ T cell recognition of M2 but not M1-like macrophages. iScience, 2023, 26(9): 107706. doi:10.1016/j.isci.2023.107706. |
[41] | Bedard M, van der Niet S, Bernard EM, et al. A terpene nucleoside from M.tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest, 2023, 133(6):e161944. doi:10.1172/JCI161944. |
[42] | Gong Z, Han S, Liang T, et al. Mycobacterium tuberculosis effector PPE 36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization. J Cell Physiol, 2021, 236(11): 7405-7420. doi:10.1002/jcp.30411. |
[43] | Sha S, Shi Y, Tang Y, et al. Mycobacterium tuberculosis Rv1987 protein induces M2 polarization of macrophages through activating the PI3K/Akt1/mTOR signaling pathway. Immunol Cell Biol, 2021, 99(6): 570-585. doi:10.1111/imcb.12436. |
[44] | Zhang Y, Li S, Liu Q, et al. Mycobacterium tuberculosis Heat-Shock Protein 16.3 Induces Macrophage M2 Polarization Through CCRL2/CX3CR1. Inflammation, 2020, 43(2): 487-506. doi:10.1007/s10753-019-01132-9. |
[45] | 师长宏, 江鹰, 赵勇, 等. 结核分枝杆菌Hsp16.3蛋白影响小鼠巨噬细胞自噬形成的实验研究. 细胞与分子免疫学杂志, 2011, 27(12): 1301-1303. doi:10.13423/j.cnki.cjcmi.006235. |
[46] | Lopes RL, Borges TJ, Araújo JF, et al. Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype. PLoS One, 2014, 9(11): e113441. doi:10.1371/journal.pone.0113441. |
[47] |
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol, 2018, 40(6): 577-591. doi:10.1007/s00281-018-0710-0.
pmid: 30306257 |
[48] | Hlaka L, Ozturk M, Chia JE, et al. IL-4i 1 Regulation of Immune Protection During Mycobacterium tuberculosis Infection. J Infect Dis, 2021, 224(12): 2170-2180. doi:10.1093/infdis/jiab558. |
[49] | Ledford H. Moderna COVID vaccine becomes second to get US authorization. Nature, 2020. doi:10.1038/d41586-020-03593-7. |
[50] | Lin W, Fan S, Liao K, et al. Engineering zinc oxide hybrid selenium nanoparticles for synergetic anti-tuberculosis treatment by combining Mycobacterium tuberculosis killings and host cell immunological inhibition. Front Cell Infect Microbiol, 2023, 12: 1074533. doi:10.3389/fcimb.2022.1074533. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[13] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[14] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||