Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (12): 1152-1157.doi: 10.19982/j.issn.1000-6621.20230293
• Original Articles • Previous Articles Next Articles
Duan Shujuan1,2, Zhao Lingjuan3, Li Chuanyou4, Li Ling1(), Wang Wei2(
)
Received:
2023-08-16
Online:
2023-12-10
Published:
2023-11-27
Contact:
Wang Wei, Email: Supported by:
CLC Number:
Duan Shujuan, Zhao Lingjuan, Li Chuanyou, Li Ling, Wang Wei. Association of ESRRB rs12437118 polymorphisms with tuberculosis susceptibility of Han population in northern China[J]. Chinese Journal of Antituberculosis, 2023, 45(12): 1152-1157. doi: 10.19982/j.issn.1000-6621.20230293
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230293
[1] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] |
Mushtaq A. New guidelines for latent tuberculosis. Lancet Infect Dis, 2020, 20(4):414. doi:10.1016/S1473-3099(20)30181-X.
pmid: 32222207 |
[3] | Moller M, Kinnear CJ, Orlova M, et al. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Front Immunol, 2018, 9:2219. doi:10.3389/fimmu.2018.02219. |
[4] | Moller M, Kinnear CJ. Human global and population-specific genetic susceptibility to Mycobacterium tuberculosis infection and disease. Curr Opin Pulm Med, 2020, 26(3):302-310. doi:10.1097/MCP.0000000000000672. |
[5] |
Aravindan PP. Host genetics and tuberculosis: Theory of genetic polymorphism and tuberculosis. Lung India, 2019, 36(3):244-252. doi:10.4103/lungindia.lungindia_146_15.
pmid: 31031349 |
[6] | Miao R, Huang S, Li C, et al. An HLA class Ⅱ locus, pre-viously identified by a genome-wide association study, is also associated with susceptibility to pulmonary tuberculosis in a Chinese population. Infect Genet Evol, 2018, 64:164-167. doi:10.1016/j.meegid.2018.06.022. |
[7] |
Zheng R, Li Z, He F, et al. Genome-wide association study identifies two risk loci for tuberculosis in Han Chinese. Nat Commun, 2018, 9(1):4072. doi:10.1038/s41467-018-06539-w.
pmid: 30287856 |
[8] |
Queiros J, Alves PC, Vicente J, et al. Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. Sci Rep, 2018, 8(1):1980. doi:10.1038/s41598-018-20158-x.
pmid: 29386541 |
[9] |
Grant AV, Sabri A, Abid A, et al. A genome-wide association study of pulmonary tuberculosis in Morocco. Hum Genet, 2016, 135(3):299-307. doi:10.1007/s00439-016-1633-2.
pmid: 26767831 |
[10] | Levano KS, Jaramillo-Valverde L, Tarazona DD, et al. Allelic and genotypic frequencies of NAT2, CYP2E1, and AADAC genes in a cohort of Peruvian tuberculosis patients. Mol Genet Genomic Med, 2021, 9(10):e1764. doi:10.1002/mgg3.1764. |
[11] | 李健阳, 陈谦, 李文. IFN-γ及IFN-γR基因多态性与脊柱结核的关联. 中华医院感染学杂志, 2022, 32(23):3614-3618. doi:10.11816/cn.ni.2022-212545. |
[12] | 邢志伟, 高艳军, 张建武, 等. CXCL10与CXCL12基因多态性与肺结核易感性的关系. 天津医药, 2018, 46(3):280-283. doi:10.11958/20171380. |
[13] | 骆嘉泽, 胡宽, 张开漩, 等. TAP2基因多态性与肺结核易感性的病例对照家系研究. 中华疾病控制杂志, 2022, 26(11):1296-1302,1308. doi:10.16462/j.cnki.zhjbkz.2022.11.010. |
[14] | Liu G, Xia R, Wang Q, et al. Significance of LncRNA CASC 8 genetic polymorphisms on the tuberculosis susceptibility in Chinese population. J Clin Lab Anal, 2020, 34(6):e23234. doi:10.1002/jcla.23234. |
[15] | Zhou Y, Zhang M. Associations between genetic polymorphisms of TLRs and susceptibility to tuberculosis: A meta-analysis. Innate Immun, 2020, 26(2):75-83. doi:10.1177/1753425919862354. |
[16] | 沙玉霞, 张雪, 周浩泉, 等. 维生素D受体基因多态性与青少年结核易感性的研究. 安徽医科大学学报, 2020, 55(10):1588-1592.doi:10.19405/j.cnki.issn1000-1492.2020.10.022. |
[17] |
Alshammari EM, Mandal RK, Wahid M, et al. Genetic association study of P2x 7 A1513C (rs 3751143) polymorphism and susceptibility to pulmonary tuberculosis: A meta-analysis based on the findings of 11 case-control studies. Asian Pac J Trop Med, 2016, 9(12):1150-1157. doi:10.1016/j.apjtm.2016.11.006.
pmid: 27955742 |
[18] |
Chen J, Ma A. Associations of polymorphisms in interleukins with tuberculosis: Evidence from a meta-analysis. Immunol Lett, 2020, 217:1-6. doi:10.1016/j.imlet.2019.10.012.
pmid: 31669382 |
[19] | Yu Z, Wit W, Xiong L, et al. Associations of six common functional polymorphisms in interleukins with tuberculosis: evidence from a meta-analysis. Pathog Dis, 2019, 77(8):ftz053. doi:10.1093/femspd/ftz053. |
[20] | Tong X, Wan Q, Li Z, et al. Association between the mannose-binding lectin (MBL)-2 gene variants and serum MBL with pulmonary tuberculosis: An update meta-analysis and systematic review. Microb Pathog, 2019, 132:374-380. doi:10.1016/j.micpath.2019.04.023. |
[21] |
Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, et al. HLA class Ⅱ sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet, 2016, 48(3):318-322. doi:10.1038/ng.3498.
pmid: 26829749 |
[22] | Swart Y, Uren C, van Helden PD, et al. Local Ancestry Adjusted Allelic Association Analysis Robustly Captures Tuberculosis Susceptibility Loci. Front Genet, 2021, 12:716558. doi:10.3389/fgene.2021.716558. |
[23] |
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett, 2018, 592(6):852-877. doi:10.1002/1873-3468.12826.
pmid: 28834535 |
[24] | Hunt SE, McLaren W, Gil L, et al. Ensembl variation resources. Database (Oxford), 2018, 2018:bay119. doi:10.1093/database/bay119. |
[25] |
Graffelman J, Ortoleva L. A network algorithm for the X chromosomal exact test for Hardy-Weinberg equilibrium with multiple alleles. Mol Ecol Resour, 2021, 21(5):1547-1557. doi:10.1111/1755-0998.13373.
pmid: 33687797 |
[26] | Wang BG, Lv Z, Ding HX, et al. The association of lncRNA-HULC polymorphisms with hepatocellular cancer risk and prognosis. Gene, 2018, 670:148-154. doi:10.1016/j.gene.2018.05.096. |
[27] |
Adachi K, Kopp W, Wu G, et al. Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency. Cell Stem Cell, 2018, 23(6):900-904. doi:10.1016/j.stem.2018.11.009.
pmid: 30526884 |
[28] |
Longo UG, Candela V, Berton A, et al. Genetic basis of rotator cuff injury: a systematic review. BMC Med Genet, 2019, 20(1):149. doi:10.1186/s12881-019-0883-y.
pmid: 31477042 |
[29] | Noman M, Ishaq R, Bukhari SA, et al. Delineation of Homozygous Variants Associated with Prelingual Sensorineural Hearing Loss in Pakistani Families. Genes (Basel), 2019, 10(12):1031. doi:10.3390/genes10121031. |
[30] |
Weber ML, Hsin HY, Kalay E, et al. Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay. BMC Med Genet, 2014, 15:81. doi:10.1186/1471-2350-15-81.
pmid: 25023176 |
[31] |
Gao H, Gao R, Zhang L, et al. Esrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCs. J Mol Cell Biol, 2019, 11(6):463-473. doi:10.1093/jmcb/mjy054.
pmid: 30299501 |
[32] | Villasenor T, Madrid-Paulino E, Maldonado-Bravo R, et al. Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Front Immunol, 2017, 8:50. doi:10.3389/fimmu.2017.00050. |
[33] | Gao Y, Wen Q, Hu S, et al. IL-36γ Promotes Killing of Mycobacterium tuberculosis by Macrophages via WNT5A-Induced Noncanonical WNT Signaling. J Immunol, 2019, 203(4):922-935. doi:10.4049/jimmunol.1900169. |
[34] |
Naranbhai V, Fletcher HA, Tanner R, et al. Distinct Transcriptional and Anti-Mycobacterial Profiles of Peripheral Blood Monocytes Dependent on the Ratio of Monocytes: Lymphocytes. EBioMedicine, 2015, 2(11):1619-1626. doi:10.1016/j.ebiom.2015.09.027.
pmid: 26870787 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||