Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (7): 732-737.doi: 10.19982/j.issn.1000-6621.20220036
• Review Articles • Previous Articles Next Articles
TIAN Na, CHU Hong-qian, SUN Zhao-gang()
Received:
2022-02-18
Online:
2022-07-10
Published:
2022-07-06
Contact:
SUN Zhao-gang
E-mail:sunzg75@163.com
Supported by:
CLC Number:
TIAN Na, CHU Hong-qian, SUN Zhao-gang. Recent progress of Nano-drug delivery system for tuberculosis treatment[J]. Chinese Journal of Antituberculosis, 2022, 44(7): 732-737. doi: 10.19982/j.issn.1000-6621.20220036
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220036
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] |
Alzahabi KH, Usmani O, Georgiou TK, et al. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci, 2020, 4(6):581-600. doi: 10.1042/etls20190154.
doi: 10.1042/ETLS20190154 pmid: 33315067 |
[3] |
Prasad R, Singh A, Gupta N. Adverse drug reactions in tuberculosis and management. Indian J Tuberc, 2019, 66(4):520-532. doi: 10.1016/j.ijtb.2019.11.005.
doi: 10.1016/j.ijtb.2019.11.005 URL |
[4] |
Bekale RB, Du Plessis SM, Hsu NJ, et al. Mycobacterium Tuberculosis and Interactions with the Host Immune System: Opportunities for Nanoparticle Based Immunotherapeutics and Vaccines. Pharm Res, 2018, 36(1):8. doi: 10.1007/s11095-018-2528-9.
doi: 10.1007/s11095-018-2528-9 URL |
[5] |
Kerry RG, Gouda S, Sil B, et al. Cure of tuberculosis using nanotechnology: An overview. J Microbiol, 2018, 56(5):287-299. doi: 10.1007/s12275-018-7414-y.
doi: 10.1007/s12275-018-7414-y URL |
[6] |
Hädrich G, Vaz GR, Boschero R, et al. Development of Lipid Nanocarriers for Tuberculosis Treatment: Evaluation of Suitable Excipients and Nanocarriers. Curr Drug Deliv, 2021, 18(6):770-778. doi: 10.2174/1567201818666210212092112.
doi: 10.2174/1567201818666210212092112 URL |
[7] |
Kalombo L, Lemmer Y, Semete-Makokotlela B, et al. Spray-Dried, Nanoencapsulated, Multi-Drug Anti-Tuberculosis Therapy Aimed at Once Weekly Administration for the Duration of Treatment. Nanomaterials (Basel), 2019, 9(8):1167. doi: 10.3390/nano9081167.
doi: 10.3390/nano9081167 URL |
[8] |
McDaniel DK, Ringel-Scaia VM, Coutermarsh-Ott SL, et al. Utilizing the Lung as a Model to Study Nanoparticle-Based Drug Delivery Systems. Methods in Mol Biol, 2018, 1831:179-190. doi: 10.1007/978-1-4939-8661-3_13.
doi: 10.1007/978-1-4939-8661-3_13 |
[9] |
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release, 2020, 326:222-244. doi: 10.1016/j.jconrel.2020.07.011.
doi: 10.1016/j.jconrel.2020.07.011 URL |
[10] |
Grotz E, Tateosian N, Amiano N, et al. Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead. Pharm Res, 2018, 35(11):213. doi: 10.1007/s11095-018-2497-z.
doi: 10.1007/s11095-018-2497-z URL |
[11] |
Doroudian M, O’ Neill A, Mac Loughlin R, et al. Nanotechno-logy in pulmonary medicine. Curr Opin Pharmacol, 2021, 56:85-92. doi: 10.1016/j.coph.2020.11.002.
doi: 10.1016/j.coph.2020.11.002 pmid: 33341460 |
[12] |
Luo J, Li X, Dong S, et al. Layer-by-layer coated hybrid nanoparticles with pH-sensitivity for drug delivery to treat acute lung infection. Drug Deliv, 2021, 28(1):2460-2468. doi: 10.1080/10717544.2021.2000676.
doi: 10.1080/10717544.2021.2000676 pmid: 34766544 |
[13] |
Deng Z, Kalin GT, Shi D, et al. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Bio, 2021, 64(3):292-307. doi: 10.1165/rcmb.2020-0306TR.
doi: 10.1165/rcmb.2020-0306TR URL |
[14] |
Ravindran S, Suthar JK, Rokade R, et al. Pharmacokinetics, Metabolism, Distribution and Permeability of Nanomedicine. Current Drug Metabolism, 2018, 19(4):327-334. doi: 10.2174/1389200219666180305154119.
doi: 10.2174/1389200219666180305154119 pmid: 29512450 |
[15] |
Ahmed T, Liu FF, He C, et al. Optimizing the Design of Blood-Brain Barrier-Penetrating Polymer-Lipid-Hybrid Nanoparticles for Delivering Anticancer Drugs to Glioblastoma. Pharm Res, 2021, 38(11):1897-1914. doi: 10.1007/s11095-021-03122-9.
doi: 10.1007/s11095-021-03122-9 URL |
[16] |
Mahmoud NN, Albasha A, Hikmat S, et al. Nanoparticle size and chemical modification play a crucial role in the interaction of nano gold with the brain: extent of accumulation and toxicity. Biomater Sci, 2020, 8(6):1669-1682. doi: 10.1039/c9bm02072a.
doi: 10.1039/c9bm02072a URL |
[17] |
Shen Z, Liu T, Yang Z, et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 235:119783. doi: 10.1016/j.biomaterials.2020.119783.
doi: 10.1016/j.biomaterials.2020.119783 URL |
[18] |
Gao T, Duan P, Zhang Q, et al. Application of One-Dimensional Nanomaterials in Catalysis at the Single-Molecule and Single-Particle Scale. Front Chem, 2021, 9:812287. doi: 10.3389/fchem.2021.812287.
doi: 10.3389/fchem.2021.812287 URL |
[19] |
Pardi N, Hogan MJ, Naradikian MS, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med, 2018, 215(6):1571-1588. doi: 10.1084/jem.20171450.
doi: 10.1084/jem.20171450 URL |
[20] |
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol, 2019, 10:707. doi: 10.3389/fimmu.2019.00707.
doi: 10.3389/fimmu.2019.00707 pmid: 31024545 |
[21] |
Bassetti M, Vena A, Russo A, et al. Inhaled Liposomal Antimicrobial Delivery in Lung Infections. Drugs, 2020, 80(13):1309-1318. doi: 10.1007/s40265-020-01359-z.
doi: 10.1007/s40265-020-01359-z pmid: 32691293 |
[22] |
高飞飞, 杜斌, 刘锌, 等. 介孔材料促进骨修复的优势. 中国组织工程研究, 2022, 26(21):3401-3409. doi: 10.12307/2022.651.
doi: 10.12307/2022.651 |
[23] |
Narayanaswamy R, Torchilin VP. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 2019, 24(3):603. doi: 10.3390/molecules24030603.
doi: 10.3390/molecules24030603 URL |
[24] |
Lobaina Mato Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm, 2019, 572:118813. doi: 10.1016/j.ijpharm.2019.118813.
doi: 10.1016/j.ijpharm.2019.118813 URL |
[25] |
郑云茹, 陈红, 魏欣琪, 等. 一氧化氮供体和阿霉素的共递送系统用于逆转肿瘤低氧耐药研究. 药学研究, 2022, 41(1):1-8,30. doi: 10.13506/j.cnki.jpr.2022.01.001.
doi: 10.13506/j.cnki.jpr.2022.01.001 |
[26] |
朱珠, 施怡, 钮晓红, 等. 泽及流浸膏纳米材料干预结核性创面的临床研究——附31例临床资料. 江苏中医药, 2021, 53(3):30-33. doi: 10.19844/j.cnki.1672-397X.2021.03.012.
doi: 10.19844/j.cnki.1672-397X.2021.03.012 |
[27] |
童萍, 刘建香, 陈雅竹, 等. 光固化纳米树脂材料在前牙美学修复中的应用效果研究. 当代医药论丛, 2020, 18(15):63-64. doi: 10.3969/j.issn.2095-7629.2020.15.041.
doi: 10.3969/j.issn.2095-7629.2020.15.041 |
[28] |
Lecio G, Ribeiro FV, Pimentel SP, et al. Novel 20% doxycycline-loaded PLGA nanospheres as adjunctive therapy in chronic periodontitis in type-2 diabetics: randomized clinical, immune and microbiological trial. Clin Oral Investig, 2020, 24(3):1269-1279. doi: 10.1007/s00784-019-03005-9.
doi: 10.1007/s00784-019-03005-9 URL |
[29] |
Ma JJ, Zhang DB, Zhang WF, et al. Application of Nanocarbon in Breast Approach Endoscopic Thyroidectomy Thyroid Cancer Surgery. J Laparoendosc Adv Surg Tech A, 2020, 30(5):547-552. doi: 10.1089/lap.2019.0794.
doi: 10.1089/lap.2019.0794 URL |
[30] |
Mohammed YH, Holmes A, Haridass IN, et al. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J Invest Dermatol, 2019, 139(2):308-315. doi: 10.1016/j.jid.2018.08.024.
doi: S0022-202X(18)32655-1 pmid: 30448212 |
[31] |
Soliman M, Salah M, Fadel M, et al. Contrasting the efficacy of pulsed dye laser and photodynamic methylene blue nanoemulgel therapy in treating acne vulgaris. Arch Dermatol Res, 2021, 313(3):173-180. doi: 10.1007/s00403-020-02093-y.
doi: 10.1007/s00403-020-02093-y URL |
[32] |
汪春绘, 王小琴, 刘良发. 纳米炭混悬液在甲状腺乳头状癌术中的应用研究. 临床耳鼻咽喉头颈外科杂志, 2020, 34(2):165-169. doi: 10.13201/j.issn.1001-1781.2020.02.016.
doi: 10.13201/j.issn.1001-1781.2020.02.016 |
[33] |
王蓉, 詹红丽, 李达周, 等. 内镜下注射标记纳米碳在进展期结直肠癌治疗中的应用研究. 中华胃肠外科杂志, 2020, 23(1):56-64. doi: 10.3760/cma.j.issn.1671-0274.2020.01.010.
doi: 10.3760/cma.j.issn.1671-0274.2020.01.010 |
[34] |
Wu B, Zhang F, Jiang W, et al. Nanosilver Dressing in Treating Deep Ⅱ Degree Burn Wound Infection in Patients with Clinical Studies. Comput Math Methods Med, 2021, 2021:3171547. doi: 10.1155/2021/3171547.
doi: 10.1155/2021/3171547 |
[35] |
Zanoni DK, Stambuk HE, Madajewski B, et al. Use of Ultrasmall Core-Shell Fluorescent Silica Nanoparticles for Image-Guided Sentinel Lymph Node Biopsy in Head and Neck Melanoma: A Nonrandomized Clinical Trial. JAMA Netw Open, 2021, 4(3):e211936. doi: 10.1001/jamanetworkopen.2021.1936.
doi: 10.1001/jamanetworkopen.2021.1936 URL |
[36] |
Gobbato C, Gobbato A, Magalhães TB, et al. Randomized, double-blind, phase Ⅲ clinical study of a novel nanotechnological topical anesthetic formulation containing lidocaine 25 mg/g and prilocaine 25 mg/g (nanorap) in skin phototypes Ⅰ-Ⅲ patients with ablative fractional CO(2) laser treatment indication in the forehead. Lasers Surg Med, 2019, 51(7):609-615. doi: 10.1002/lsm.23071.
doi: 10.1002/lsm.23071 pmid: 30811630 |
[37] |
Tomic' I, Juretic' M, Jug M, et al. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int J Pharm, 2019, 563:249-258. doi: 10.1016/j.ijpharm.2019.04.016.
doi: 10.1016/j.ijpharm.2019.04.016 URL |
[38] | Kesharwani P. Nanotechnology Based Approaches for Tuberculosis Treatment. New York: Academic Press, 2020: 143-162. |
[39] |
Grego EA, Siddoway AC, Uz M, et al. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol, 2021, 433:29-76. doi: 10.1007/82_2020_226.
doi: 10.1007/82_2020_226 |
[40] |
Xie L, Yue W, Ibrahim K, et al. A Long-Acting Curcumin Nanoparticle/In Situ Hydrogel Composite for the Treatment of Uveal Melanoma. Pharmaceutics, 2021, 13(9):1335. doi: 10.3390/pharmaceutics13091335.
doi: 10.3390/pharmaceutics13091335 URL |
[41] |
Chatterjee B, Gorain B, Mohananaidu K, et al. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm, 2019, 565:258-268. doi: 10.1016/j.ijpharm.2019.05.032.
doi: 10.1016/j.ijpharm.2019.05.032 URL |
[42] |
Mcclements DJ, Jafari SM. General Aspects of Nanoemulsions and Their Formulation. Nanoemulsions, 2018:3-20. doi: 10.1016/B978-0-12-811838-2.00001-1
doi: 10.1016/B978-0-12-811838-2.00001-1 |
[43] |
Iqbal R, Ahmed S, Jain GK, et al. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int J Pharm, 2019, 565:20-32. doi: 10.1016/j.ijpharm.2019.04.076.
doi: 10.1016/j.ijpharm.2019.04.076 URL |
[44] |
廖艳梅, 李小芳, 刘罗娜, 等. 橙皮苷纳米乳液的制备及其稳定性研究. 中草药, 2019, 50(10):2312-2318. doi: 10.7501/j.issn.0253-2670.2019.10.009.
doi: 10.7501/j.issn.0253-2670.2019.10.009 |
[45] |
Shobo A, Pamreddy A, Kruger HG, et al. Enhanced brain penetration of pretomanid by intranasal administration of an oil-in-water nanoemulsion. Nanomedicine (Lond), 2018, 13(9):997-1008. doi: 10.2217/nnm-2017-0365.
doi: 10.2217/nnm-2017-0365 URL |
[46] |
Choudhary A, Jain P, Mohapatra S, et al. A Novel Approach of Targeting Linezolid Nanoemulsion for the Management of Lymph Node Tuberculosis. ACS Omega, 2022, 7(18):15688-15694. doi: 10.1021/acsomega.2c00592.
doi: 10.1021/acsomega.2c00592 URL |
[47] |
Bazán Henostroza MA, Curo Melo KJ, Nishitani Yukuyama M, et al. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp, 2020, 597:124755. doi: 10.1016/j.colsurfa.2020.124755.
doi: 10.1016/j.colsurfa.2020.124755 URL |
[48] |
Halicki PCB, Hädrich G, Boschero R, et al. Alternative Pharmaceutical Formulation for Oral Administration of Rifampicin. Assay Drug Dev Technol, 2018, 16(8):456-461. doi: 10.1089/adt.2018.874.
doi: 10.1089/adt.2018.874 URL |
[49] |
Hussain A, Altamimi MA, Alshehri S, et al. Novel Approach for Transdermal Delivery of Rifampicin to Induce Synergistic Antimycobacterial Effects Against Cutaneous and Systemic Tuberculosis Using a Cationic Nanoemulsion Gel. Int J Nanomedicine, 2020, 15:1073-1094. doi: 10.2147/ijn.S236277.
doi: 10.2147/ijn.S236277 URL |
[50] |
Burger C, Aucamp M, du Preez J, et al. Formulation of Natural Oil Nano-Emulsions for the Topical Delivery of Clofazimine, Artemisone and Decoquinate. Pharm Res, 2018, 35(10):186. doi: 10.1007/s11095-018-2471-9.
doi: 10.1007/s11095-018-2471-9 URL |
[51] |
Large DE, Abdelmessih RG, Fink EA, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev, 2021, 176:113851. doi: 10.1016/j.addr.2021.113851.
doi: 10.1016/j.addr.2021.113851 URL |
[52] |
Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci, 2018, 114:103-113. doi: 10.1016/j.ejps.2017.12.006.
doi: S0928-0987(17)30666-8 pmid: 29229273 |
[53] |
Magalhäes J, L Chaves L, C Vieira A, et al. Optimization of Rifapentine-Loaded Lipid Nanoparticles Using a Quality-by-Design Strategy. Pharmaceutics, 2020, 12(1):75. doi: 10.3390/pharmaceutics12010075.
doi: 10.3390/pharmaceutics12010075 URL |
[54] |
Patil TS, Deshpande AS. Nanostructured lipid carrier-mediated lung targeted drug delivery system to enhance the safety and bioavailability of clofazimine. Drug Dev Ind Pharm, 2021, 47(3):385-393. doi: 10.1080/03639045.2021.1892743.
doi: 10.1080/03639045.2021.1892743 URL |
[55] |
Khatak S, Mehta M, Awasthi R, et al. Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis (Edinb), 2020, 125:102008. doi: 10.1016/j.tube.2020.102008.
doi: 10.1016/j.tube.2020.102008 URL |
[56] |
Nemati E, Mokhtarzadeh A, Panahi-Azar V, et al. Ethambutol-Loaded Solid Lipid Nanoparticles as Dry Powder Inhalable Formulation for Tuberculosis Therapy. AAPS PharmSciTech, 2019, 20(3):120. doi: 10.1208/s12249-019-1334-y.
doi: 10.1208/s12249-019-1334-y pmid: 30796625 |
[57] |
Maretti E, Costantino L, Buttini F, et al. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res, 2019, 9(1):298-310. doi: 10.1007/s13346-018-00607-w.
doi: 10.1007/s13346-018-00607-w URL |
[58] |
Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res, 2021, 11(3):1218-1235. doi: 10.1007/s13346-020-00849-7.
doi: 10.1007/s13346-020-00849-7 URL |
[59] |
Singh M, Schiavone N, Papucci L, et al. Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability. Eur J Pharm Biopharm, 2021, 160:100-124. doi: 10.1016/j.ejpb.2021.01.009.
doi: 10.1016/j.ejpb.2021.01.009 URL |
[60] |
Altamimi MA, Hussain A, Imam SS, et al. Transdermal delivery of isoniazid loaded elastic liposomes to control cutaneous and systemic tuberculosis. J Drug Deliv Sci Technol, 2020, 59:101848. doi: 10.1016/j.jddst.2020.101848.
doi: 10.1016/j.jddst.2020.101848 |
[61] |
Tian M, Zhou Z, Tan S, et al. Formulation in DDA-MPLA-TDB Liposome Enhances the Immunogenicity and Protective Efficacy of a DNA Vaccine against Mycobacterium tuberculosis Infection. Front Immunol, 2018, 9:310. doi: 10.3389/fimmu.2018.00310.
doi: 10.3389/fimmu.2018.00310 URL |
[62] |
Diogo GR, Hart P, Copland A, et al. Immunization With Mycobacterium tuberculosis Antigens Encapsulated in Phosphatidylserine Liposomes Improves Protection Afforded by BCG. Front Immunol, 2019, 10:1349. doi: 10.3389/fimmu.2019.01349.
doi: 10.3389/fimmu.2019.01349 pmid: 31293568 |
[63] |
Gordillo-Galeano A, Ospina-Giraldo LF, Mora-Huertas CE. Lipid nanoparticles with improved biopharmaceutical attributes for tuberculosis treatment. Int J Pharm, 2021, 596:120321. doi: 10.1016/j.ijpharm.2021.120321.
doi: 10.1016/j.ijpharm.2021.120321 URL |
[64] |
杨雪华, 李大伟, 毛楷凡, 等. 纳米凝胶的研究进展. 食品与药品, 2022, 24(2):183-187. doi: 10.3969/j.issn.1672-979X.2022.02.018.
doi: 10.3969/j.issn.1672-979X.2022.02.018 |
[65] |
Poh W, Ab Rahman N, Ostrovski Y, et al. Active pulmonary targeting against tuberculosis (TB) via triple-encapsulation of Q203, bedaquiline and superparamagnetic iron oxides (SPIOs) in nanoparticle aggregates. Drug Deliv, 2019, 26(1):1039-1048. doi: 10.1080/10717544.2019.1676841.
doi: 10.1080/10717544.2019.1676841 URL |
[66] |
Churilov L, Korzhikov-Vlakh V, Sinitsyna E, et al. Enhanced Delivery of 4-Thioureidoiminomethylpyridinium Perchlorate in Tuberculosis Models with IgG Functionalized Poly(Lactic Acid)-Based Particles. Pharmaceutics, 2018, 11(1):2. doi: 10.3390/pharmaceutics11010002.
doi: 10.3390/pharmaceutics11010002 URL |
[67] |
Du X, Tan D, Gong Y, et al. A new poly(I:C)-decorated PLGA-PEG nanoparticle promotes Mycobacterium tuberculosis fusion protein to induce comprehensive immune responses in mice intranasally. Microb Pathog, 2022, 162:105335. doi: 10.1016/j.micpath.2021.105335.
doi: 10.1016/j.micpath.2021.105335 URL |
[68] |
Thomas D, KurienThomas K, Latha MS. Preparation and evaluation of alginate nanoparticles prepared by green method for drug delivery applications. Int J Biol Macromol, 2020, 154:888-895. doi: 10.1016/j.ijbiomac.2020.03.167.
doi: S0141-8130(20)32746-X pmid: 32209372 |
[69] |
Hikmawati D, Maulida HN, Putra AP, et al. Synthesis and Characterization of Nanohydroxyapatite-Gelatin Composite with Streptomycin as Antituberculosis Injectable Bone Substitute. Int J Biomater, 2019, 2019:7179243. doi: 10.1155/2019/7179243.
doi: 10.1155/2019/7179243 |
[70] |
张贺龙, 王慧燕, 李卓, 等. 壳聚糖-明胶/聚乳酸-羟基乙酸联合载药水凝胶的体外抗结核作用. 中国组织工程研究, 2020, 24(22):3480-3485. doi: 10.3969/j.issn.2095-4344.2280.
doi: 10.3969/j.issn.2095-4344.2280 |
[71] |
Li B, Tan Q, Fan Z, et al. Next-generation Theranostics: Functionalized Nanomaterials Enable Efficient Diagnosis and Therapy of Tuberculosis. Adv Ther, 2020, 3(9):1900189. doi: 10.1002/adtp.201900189.
doi: 10.1002/adtp.201900189 |
[72] |
Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel), 2020, 10(2):292. doi: 10.3390/nano10020292.
doi: 10.3390/nano10020292 URL |
[73] |
Ellis T, Chiappi M, García-Trenco A, et al. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis. ACS Nano, 2018, 12(6):5228-5240. doi: 10.1021/acsnano.7b08264.
doi: 10.1021/acsnano.7b08264 URL |
[74] |
Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, et al. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics, 2019, 11(12):687. doi: 10.3390/pharmaceutics11120687.
doi: 10.3390/pharmaceutics11120687 URL |
[75] |
Wyszogrodzka G, Dorożyński P, Gil B, et al. Iron-Based Metal-Organic Frameworks as a Theranostic Carrier for Local Tuberculosis Therapy. Pharm Res, 2018, 35(7):144. doi: 10.1007/s11095-018-2425-2.
doi: 10.1007/s11095-018-2425-2 URL |
[76] |
Tenland E, Pochert A, Krishnan N, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One, 2019, 14(2):e0212858. doi: 10.1371/journal.pone.0212858.
doi: 10.1371/journal.pone.0212858 URL |
[77] |
Miranda MS, Rodrigues MT, Domingues RMA, et al. Develo-pment of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery. Adv Healthc Mater, 2018, 7(15):e1800124. doi: 10.1002/adhm.201800124.
doi: 10.1002/adhm.201800124 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||