Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (3): 294-298.doi: 10.19982/j.issn.1000-6621.20210646
• Review Articles • Previous Articles Next Articles
Received:
2021-11-12
Online:
2022-03-10
Published:
2022-03-08
Contact:
LI Xiao-fei
E-mail:1971069866@qq.com
Supported by:
CLC Number:
FAN Ru, LI Xiao-fei. Research progress of molecular biology detection technology for tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(3): 294-298. doi: 10.19982/j.issn.1000-6621.20210646
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210646
[1] |
Daley CL. The Global Fight Against Tuberculosis. Thorac Surg Clin, 2019, 29(1):19-25. doi: 10.1016/j.thorsurg.2018.09.010.
doi: 10.1016/j.thorsurg.2018.09.010 URL |
[2] | 严芝光, 周丽. 结核杆菌实验室检测技术与临床应用进展. 临床检验杂志(电子版), 2017, 6(4):826-828. |
[3] |
姜世闻. 《结核病分类》和《肺结核诊断》新标准对结核病控制工作的影响. 中国防痨杂志, 2018, 40(3):229-230. doi: 10.3969/j.issn.1000-6621.2018.03.001.
doi: 10.3969/j.issn.1000-6621.2018.03.001 |
[4] |
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep, 2020, 47(5):4065-4075. doi: 10.1007/s11033-020-05413-7.
doi: 10.1007/s11033-020-05413-7 URL |
[5] |
Zifodya JS, Kreniske JS, Schiller I, et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst Rev, 2021, 2:CD009593. doi: 10.1002/14651858.CD009593.
doi: 10.1002/14651858.CD009593 |
[6] |
Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2019, 6(6): CD009593. doi: 10.1002/14651858.CD009593.
doi: 10.1002/14651858.CD009593 |
[7] |
Kay AW, González Fernández L, Takwoingi Y, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra assays for active tuberculosis and rifampicin resistance in children. Cochrane Database Syst Rev, 2020, 8(8): CD013359. doi: 10.1002/14651858.CD013359.
doi: 10.1002/14651858.CD013359 |
[8] |
Shapiro AE, Ross JM, Yao M, et al. Xpert MTB/RIF and Xpert Ultra assays for screening for pulmonary tuberculosis and rifampicin resistance in adults, irrespective of signs or symptoms. Cochrane Database Syst Rev, 2021, 3(3):CD013694. doi: 10.1002/14651858.CD013694.
doi: 10.1002/14651858.CD013694 |
[9] |
韩利军, 赵雪瑶. 结核性脑膜炎脑脊液分子检测技术概述. 结核与肺部疾病杂志, 2021, 2(1):8-12. doi: 10.3969/j.issn.2096-8493.2021.01.003.
doi: 10.3969/j.issn.2096-8493.2021.01.003 |
[10] | World Health Organization. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children. Geneva: World Health Organization, 2014. |
[11] |
Park M, Kon OM. Use of Xpert MTB/RIF and Xpert Ultra in extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2021, 19(1):65-77. doi: 10.1080/14787210.2020.1810565.
doi: 10.1080/14787210.2020.1810565 URL |
[12] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 3: diagnosis-rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[13] |
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis, 2018, 18(1):76-84. doi: 10.1016/S1473-3099(17)30691-6.
doi: S1473-3099(17)30691-6 pmid: 29198911 |
[14] |
Jiang J, Yang J, Shi Y, et al. Head-to-head comparison of the diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra for tuberculosis: a meta-analysis. Infect Dis (Lond), 2020, 52(11):763-775. doi: 10.1080/23744235.2020.1788222.
doi: 10.1080/23744235.2020.1788222 |
[15] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2020. |
[16] |
MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020, 58(10):e01582-19. doi: 10.1128/JCM.01582-19.
doi: 10.1128/JCM.01582-19 |
[17] |
Penn-Nicholson A, Gomathi SN, Ugarte-Gil C, et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur Respir J, 2021, 58(5):2100526. doi: 10.1183/13993003.00526-2021.
doi: 10.1183/13993003.00526-2021 URL |
[18] | World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Geneva: World Health Organization, 2020. |
[19] |
Gomathi NS, Singh M, Singh UB, et al. Multicentric validation of indigenous molecular test Truenat MTB for detection of Mycobacterium tuberculosis in sputum samples from presumptive pulmonary tuberculosis patients in comparison with reference standards. Indian J Med Res, 2020, 152(4):378-385. doi: 10.4103/ijmr.IJMR_2539_19.
doi: 10.4103/ijmr.IJMR_2539_19 pmid: 33380702 |
[20] | World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva: World Health Organization, 2016. |
[21] |
林晶晶, 夏露, 刘旭晖, 等. 环介导等温扩增技术用于结核病诊断的价值评估. 复旦学报(医学版), 2021, 48(1):104-110. doi: 10.3969/j.issn.1672-8467.2021.01.016.
doi: 10.3969/j.issn.1672-8467.2021.01.016 |
[22] |
Wu D, Kang J, Li B, et al. Evaluation of the RT-LAMP and LAMP methods for detection of Mycobacterium tuberculosis. J Clin Lab Anal, 2018, 32(4):e22326. doi: 10.1002/jcla.22326.
doi: 10.1002/jcla.22326 URL |
[23] |
Yadav R, Daroch P, Gupta P, et al. Diagnostic accuracy of TB-LAMP assay in patients with pulmonary tuberculosis-a case-control study in northern India. Pulmonology, 2020, 5:S2531-0437(20)30224-5. doi: 10.1016/j.pulmoe.2020.10.007.
doi: 10.1016/j.pulmoe.2020.10.007 |
[24] |
Bojang AL, Mendy FS, Tientcheu LD, et al. Comparison of TB-LAMP, GeneXpert MTB/RIF and culture for diagnosis of pulmonary tuberculosis in The Gambia. J Infect, 2016, 72(3):332-337. doi: 10.1016/j.jinf.2015.11.011.
doi: 10.1016/j.jinf.2015.11.011 pmid: 26724771 |
[25] |
Joon D, Nimesh M, Varma-Basil M, et al. Evaluation of improved IS6110 LAMP assay for diagnosis of pulmonary and extra pulmonary tuberculosis. J Microbiol Methods, 2017, 139:87-91. doi: 10.1016/j.mimet.2017.05.007.
doi: 10.1016/j.mimet.2017.05.007 URL |
[26] |
徐东芳, 王超, 包训迪, 等. 线性探针技术在耐药结核病诊断中的应用. 安徽医药, 2020, 24(12):2422-2425. doi: 10.3969/j.issn.1009-6469.2020.12.023.
doi: 10.3969/j.issn.1009-6469.2020.12.023 |
[27] | World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis. Geneva: World Health Organization, 2008. |
[28] |
Nathavitharana RR, Cudahy PG, Schumacher SG, et al. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2017, 49(1):1601075. doi: 10.1183/13993003.01075-2016.
doi: 10.1183/13993003.01075-2016 URL |
[29] | World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Geneva: World Health Organization, 2016. |
[30] |
Singh BK, Sharma SK, Sharma R, et al. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis. PLoS One, 2017, 12(8):e182988. doi: 10.1371/journal.pone.0182988.
doi: 10.1371/journal.pone.0182988 |
[31] |
许璐, 孙一鑫, 詹思延. 线性探针技术诊断耐药肺结核准确性的Meta分析. 中华流行病学杂志, 2018, 39(11):1491-1495. doi: 10.3760/cma.j.issn.0254-6450.2018.11.014.
doi: 10.3760/cma.j.issn.0254-6450.2018.11.014 |
[32] |
李俊明, 徐炜. 结核病的分子诊断——进展与挑战. 实验与检验医学, 2020, 38(6):1039-1046, 1066. doi: 10.3969/j.issn.1674-1129.2020.06.001.
doi: 10.3969/j.issn.1674-1129.2020.06.001 |
[33] |
Votintseva AA, Bradley P, Pankhurst L, et al. Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. J Clin Microbiol, 2017, 55(5):1285-1298. doi: 10.1128/JCM.02483-16.
doi: 10.1128/JCM.02483-16 pmid: 28275074 |
[34] |
Amlerova J, Bitar I, Hrabak J. Genotyping of Mycobacterium tuberculosis using whole genome sequencing. Folia Microbiol (Praha), 2018, 63(5):537-545. doi: 10.1007/s12223-018-0599-y.
doi: 10.1007/s12223-018-0599-y URL |
[35] |
Gautam SS, Mac AM, Cooley LA, et al. Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS One, 2018, 13(2):e192351. doi: 10.1371/journal.pone.0192351.
doi: 10.1371/journal.pone.0192351 |
[36] |
林爱清, 张璐, 成宝涛, 等. 二代测序技术应用于脑脊液检测在结核性脑膜炎中的早期诊断价值. 中华实验和临床感染病杂志(电子版), 2020, 14(4):291-295. doi: 10.3877/cma.j.issn.1674-1358.2020.04.005.
doi: 10.3877/cma.j.issn.1674-1358.2020.04.005 |
[37] |
Zhao M, Tang K, Liu F, et al. Metagenomic Next-Generation Sequencing Improves Diagnosis of Osteoarticular Infections From Abscess Specimens: A Multicenter Retrospective Study. Front Microbiol, 2020, 11:2034. doi: 10.3389/fmicb.2020.02034.
doi: 10.3389/fmicb.2020.02034 URL |
[38] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020, 81(4):567-574. doi: 10.1016/j.jinf.2020.08.004.
doi: 10.1016/j.jinf.2020.08.004 URL |
[39] |
Zhou X, Wu H, Ruan Q, et al. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol, 2019, 9:351. doi: 10.3389/fcimb.2019.00351.
doi: 10.3389/fcimb.2019.00351 URL |
[40] |
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation. Ann Clin Microbiol Antimicrob, 2019, 18(1):2. doi: 10.1186/s12941-018-0300-y.
doi: 10.1186/s12941-018-0300-y URL |
[41] |
辜吉秀, 李晴, 马玲, 等. 高通量二代测序技术在耐药结核病诊断中的应用. 中国防痨杂志, 2020, 42(11):1203-1208. doi: 10.3969/j.issn.1000-6621.2020.11.011.
doi: 10.3969/j.issn.1000-6621.2020.11.011 |
[42] |
Lee RS, Pai M. Real-Time Sequencing of Mycobacterium tuberculosis: Are We There Yet?. J Clin Microbiol, 2017, 55(5):1249-1254. doi: 10.1128/JCM.00358-17.
doi: 10.1128/JCM.00358-17 URL |
[43] |
Horita N, Yamamoto M, Sato T, et al. Sensitivity and specificity of Cobas TaqMan MTB real-time polymerase chain reaction for culture-proven Mycobacterium tuberculosis: meta-analysis of 26999 specimens from 17 Studies. Sci Rep, 2015, 5:18113. doi: 10.1038/srep18113.
doi: 10.1038/srep18113 URL |
[44] |
Park JE, Huh HJ, Koh WJ, et al. Performance evaluation of the Cobas TaqMan MTB assay on respiratory specimens according to clinical application. Int J Infect Dis, 2017, 64:42-46. doi: 10.1016/j.ijid.2017.08.014.
doi: 10.1016/j.ijid.2017.08.014 URL |
[45] |
Bloemberg GV, Voit A, Ritter C, et al. Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J Clin Microbiol, 2013, 51(7):2112-2117. doi: 10.1128/JCM.00142-13.
doi: 10.1128/JCM.00142-13 pmid: 23616457 |
[46] |
逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021, 14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05.
doi: 10.3969/j.issn.1674-3806.2021.01.05 |
[47] |
Sağıroğlu P, Atalay MA. Evaluation of the performance of the BD MAX MDR-TB test in the diagnosis of Mycobacterium tuberculosis complex in extrapulmonary and pulmonary samples. Expert Rev Mol Diagn, 2021, 21(12):1361-1367. doi: 10.1080/14737159.2021.1997594.
doi: 10.1080/14737159.2021.1997594 URL |
[48] |
Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical Evaluation of BD MAX MDR-TB Assay for Direct Detection of Mycobacterium tuberculosis Complex and Resistance Markers. J Mol Diagn, 2020, 22(10):1280-1286. doi: 10.1016/j.jmoldx.2020.06.013.
doi: S1525-1578(20)30396-2 pmid: 32688054 |
[49] |
Shah M, Paradis S, Betz J, et al. Multicenter Study of the Accuracy of the BD MAX Multidrug-resistant Tuberculosis Assay for Detection of Mycobacterium tuberculosis Complex and Mutations Associated With Resistance to Rifampin and Isoniazid. Clin Infect Dis, 2020, 71(5):1161-1167. doi: 10.1093/cid/ciz932.
doi: 10.1093/cid/ciz932 URL |
[50] |
Borrás R, Martínez V, Vinuesa V, et al. Field performance of the Abbott RealTime MTB assay for the diagnosis of extrapulmonary tuberculosis in a low-prevalence setting. Enferm Infecc Microbiol Clin (Engl Ed), 2020, 38(5):206-211. doi: 10.1016/j.eimc.2019.08.007.
doi: 10.1016/j.eimc.2019.08.007 |
[51] |
Hofmann-Thiel S, Molodtsov N, Duffner C, et al. Capacity of Abbott RealTime MTB RIF/INH to detect rifampicin- and isoniazid-resistant tuberculosis. Int J Tuberc Lung Dis, 2019, 23(4):458-464. doi: 10.5588/ijtld.18.0615.
doi: 10.5588/ijtld.18.0615 pmid: 31064625 |
[52] |
Kohli M, MacLean E, Pai M, et al. Diagnostic accuracy of centralised assays for TB detection and detection of resistance to rifampicin and isoniazid: a systematic review and meta-analysis. Eur Respir J, 2021, 57(2):2000747. doi: 10.1183/13993003.00747-2020.
doi: 10.1183/13993003.00747-2020 URL |
[53] |
Scott L, David A, Noble L, et al. Performance of the Abbott RealTime MTB and MTB RIF/INH Assays in a Setting of High Tuberculosis and HIV Coinfection in South Africa. J Clin Microbiol, 2017, 55(8):2491-2501. doi: 10.1128/JCM.00289-17.
doi: 10.1128/JCM.00289-17 URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[6] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[7] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[8] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[9] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[10] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[11] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[12] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[13] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[14] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[15] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||