Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (2): 193-196.doi: 10.19982/j.issn.1000-6621.20210660
• Review Articles • Previous Articles Next Articles
HAN Ting-ting1, CHEN Qiu-qi1, DENG Guo-fang2()
Received:
2021-11-18
Online:
2022-02-10
Published:
2022-02-14
Contact:
DENG Guo-fang
E-mail:jxxk1035@yeah.net
Supported by:
CLC Number:
HAN Ting-ting, CHEN Qiu-qi, DENG Guo-fang. The research progress of 3-gene host transcriptional biomarkers (GBP5, DUSP3 and KLF2)[J]. Chinese Journal of Antituberculosis, 2022, 44(2): 193-196. doi: 10.19982/j.issn.1000-6621.20210660
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210660
[1] |
Singhania A, Wilkinson RJ, Rodrigue M, et al. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat Immunol, 2018, 19(11):1159-1168. doi: 10.1038/s41590-018-0225-9.
doi: 10.1038/s41590-018-0225-9 pmid: 30333612 |
[2] |
Denkinger CM, Kik SV, Cirillo DM, et al. Defining the Needs for Next Generation Assays for Tuberculosis. J Infect Dis, 2015, 211(suppl_2):S29-S38. doi: 10.1093/infdis/jiu821.
doi: 10.1093/infdis/jiu821 URL |
[3] | World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization, 2021. |
[4] |
Tan Y, Tan Y, Li J, et al. Combined IFN-γ and IL-2 release assay for detect active pulmonary tuberculosis: a prospective multicentre diagnostic study in China. J Transl Med, 2021, 19(1):289. doi: 10.1186/s12967-021-02970-8.
doi: 10.1186/s12967-021-02970-8 URL |
[5] |
Hoang LT, Jain P, Pillay TD, et al. Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. Lancet Infect Dis, 2021, 21(3):366-375. doi: 10.1016/S1473-3099(20)30928-2.
doi: 10.1016/S1473-3099(20)30928-2 pmid: 33508221 |
[6] |
Roe JK, Thomas N, Gil E, et al. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis. JCI Insight, 2016, 1(16):e87238. doi: 10.1172/jci.insight.87238.
doi: 10.1172/jci.insight.87238 |
[7] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3):213-224. doi: 10.1016/S2213-2600(16)00048-5.
doi: 10.1016/S2213-2600(16)00048-5 URL |
[8] |
Blankley S, Berry MP, Graham CM, et al. The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1645):20130427. doi: 10.1098/rstb.2013.0427.
doi: 10.1098/rstb.2013.0427 URL |
[9] |
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(10035):2312-2322. doi: 10.1016/S0140-6736(15)01316-1.
doi: 10.1016/S0140-6736(15)01316-1 URL |
[10] |
Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med, 2019, 16(4):e1002786. doi: 10.1371/journal.pmed.1002786.
doi: 10.1371/journal.pmed.1002786 URL |
[11] |
Thompson EG, Du Y, Malherbe ST, et al. Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis (Edinb), 2017, 107:48-58. doi: 10.1016/j.tube.2017.08.004.
doi: 10.1016/j.tube.2017.08.004 URL |
[12] |
Chen JX, Han YS, Zhang SQ, et al. Novel therapeutic evaluation biomarkers of lipid metabolism targets in uncomplicated pulmonary tuberculosis patients. Signal Transduct Target Ther, 2021, 6(1):22. doi: 10.1038/s41392-020-00427-w.
doi: 10.1038/s41392-020-00427-w URL |
[13] |
Bloom CI, Graham CM, Berry MPR, et al. Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy. PLoS One, 2012, 7(10):e46191. doi: 10.1371/journal.pone.0046191.
doi: 10.1371/journal.pone.0046191 URL |
[14] |
Satproedprai N, Wichukchinda N, Suphankong S, et al. Diagnostic value of blood gene expression signatures in active tuberculosis in Thais: a pilot study. Genes Immun, 2015, 16(4):253-260. doi: 10.1038/gene.2015.4.
doi: 10.1038/gene.2015.4 pmid: 25764116 |
[15] |
O’Garra A, Berry MPR, Graham CM, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309):973-977. doi: 10.1038/nature09247.
doi: 10.1038/nature09247 URL |
[16] |
Bayaa R, Ndiaye M, Chedid C, et al. Multi-country evaluation of RISK6, a 6-gene blood transcriptomic signature, for tuberculosis diagnosis and treatment monitoring. Sci Rep, 2021, 11(1):13646. doi: 10.1038/s41598-021-93059-1.
doi: 10.1038/s41598-021-93059-1 pmid: 34211042 |
[17] |
Sambarey A, Devaprasad A, Mohan A, et al. Unbiased Identification of Blood-based Biomarkers for Pulmonary Tuberculosis by Modeling and Mining Molecular Interaction Networks. EBioMedicine, 2017, 15:112-126. doi: 10.1016/j.ebiom.2016.12.009.
doi: S2352-3964(16)30588-6 pmid: 28065665 |
[18] |
MacLean E, Broger T. A 10-Gene Signature for the Diagnosis and Treatment Monitoring of Active Tuberculosis Using a Molecular Interaction Network Approach. EBioMedicine, 2017, 16(C):22-23. doi: 10.1016/j.ebiom.2017.01.017.
doi: 10.1016/j.ebiom.2017.01.017 URL |
[19] |
Heyckendorf J, Marwitz S, Reimann M, et al. Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. Eur Respir J, 2021, 58(3):2003492. doi: 10.1183/13993003.03492-2020.
doi: 10.1183/13993003.03492-2020 URL |
[20] |
Sivakumaran D, Jenum S, Vaz M, et al. Combining host-derived biomarkers with patient characteristics improves signature performance in predicting tuberculosis treatment outcomes. Commun Biol, 2020, 3(1):359. doi: 10.1038/s42003-020-1087-x.
doi: 10.1038/s42003-020-1087-x URL |
[21] |
Francisco NM, Fang YM, Ding L, et al. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J Infect, 2017, 75(6):499-510. doi: 10.1016/j.jinf.2017.09.012.
doi: 10.1016/j.jinf.2017.09.012 URL |
[22] |
Warsinske HC, Rao AM, Moreira F, et al. Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw Open, 2018, 1(6):e183779. doi: 10.1001/jamanetworkopen.2018.3779.
doi: 10.1001/jamanetworkopen.2018.3779 URL |
[23] |
Zimmer AJ, Schumacher SG, Sodersten E, et al. A novel blood-based assay for treatment monitoring of tuberculosis. BMC Res Notes, 2021, 14(1):247. doi: 10.1186/s13104-021-05663-z.
doi: 10.1186/s13104-021-05663-z URL |
[24] |
Suárez I, Fünger SM, Kröger S, et al. The Diagnosis and Treatment of Tuberculosis. Dtsch Arztebl Int, 2019, 116(43):729-735. doi: 10.3238/arztebl.2019.0729.
doi: 10.3238/arztebl.2019.0729 |
[25] |
Koo H, Min J, Kim HW, et al. Prediction of treatment failure and compliance in patients with tuberculosis. BMC Infect Dis, 2020, 20(1):622. doi: 10.1186/s12879-020-05350-7.
doi: 10.1186/s12879-020-05350-7 URL |
[26] |
Södersten E, Ongarello S, Mantsoki A, et al. Diagnostic Accuracy Study of a Novel Blood-Based Assay for Identification of Tuberculosis in People Living with HIV. J Clin Microbiol, 2021, 59(3). doi: 10.1128/JCM.01643-20.
doi: 10.1128/JCM.01643-20 |
[27] |
Turner CT, Gupta RK, Tsaliki E, et al. Blood transcriptional biomarkers for active pulmonary tuberculosis in a high-burden setting: a prospective, observational, diagnostic accuracy study. Lancet Respir Med, 2020, 8(4):407-419. doi: 10.1016/S2213-2600(19)30469-2.
doi: 10.1016/S2213-2600(19)30469-2 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||